Quantum Implicit Neural Representations
- URL: http://arxiv.org/abs/2406.03873v3
- Date: Sun, 1 Sep 2024 09:56:44 GMT
- Title: Quantum Implicit Neural Representations
- Authors: Jiaming Zhao, Wenbo Qiao, Peng Zhang, Hui Gao,
- Abstract summary: Implicit neural representations have emerged as a powerful paradigm to represent signals such as images and sounds.
Traditional neural networks face challenges in accurately modeling high-frequency components of signals.
We propose Quantum Implicit Representation Network (QIREN), a novel quantum generalization of FNNs.
- Score: 4.2216663697289665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit neural representations have emerged as a powerful paradigm to represent signals such as images and sounds. This approach aims to utilize neural networks to parameterize the implicit function of the signal. However, when representing implicit functions, traditional neural networks such as ReLU-based multilayer perceptrons face challenges in accurately modeling high-frequency components of signals. Recent research has begun to explore the use of Fourier Neural Networks (FNNs) to overcome this limitation. In this paper, we propose Quantum Implicit Representation Network (QIREN), a novel quantum generalization of FNNs. Furthermore, through theoretical analysis, we demonstrate that QIREN possesses a quantum advantage over classical FNNs. Lastly, we conducted experiments in signal representation, image superresolution, and image generation tasks to show the superior performance of QIREN compared to state-of-the-art (SOTA) models. Our work not only incorporates quantum advantages into implicit neural representations but also uncovers a promising application direction for Quantum Neural Networks.
Related papers
- ANTN: Bridging Autoregressive Neural Networks and Tensor Networks for Quantum Many-Body Simulation [5.283885355422517]
We develop a novel architecture, Autoregressive NeuralNet, which bridges tensor networks and autoregressive neural networks.
We show that Autoregressive NeuralNet parameterizes normalized wavefunctions, generalizes the expressivity of tensor networks and autoregressive neural networks, and inherits a variety of symmetries from autoregressive neural networks.
Our work opens up new opportunities for quantum many-body physics simulation, quantum technology design, and generative modeling in artificial intelligence.
arXiv Detail & Related papers (2023-04-04T17:54:14Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
Quantum neural networks (QNNs) have emerged as a leading strategy to establish applications in machine learning, chemistry, and optimization.
We formulate a theoretical framework for the expressive ability of data re-uploading quantum neural networks.
arXiv Detail & Related papers (2022-05-16T17:58:27Z) - Random Quantum Neural Networks (RQNN) for Noisy Image Recognition [0.9205287316703888]
We introduce a novel class of supervised Random Quantum Neural Networks (RQNNs) with a robust training strategy.
The proposed RQNN employs hybrid classical-quantum algorithms with superposition state and amplitude encoding features.
Experiments on the MNIST, FashionMNIST, and KMNIST datasets demonstrate that the proposed RQNN model achieves an average classification accuracy of $94.9%$.
arXiv Detail & Related papers (2022-03-03T15:15:29Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
Polynomial neural networks (PNNs) have been shown to be particularly effective at image generation and face recognition, where high-frequency information is critical.
Previous studies have revealed that neural networks demonstrate a $textitspectral bias$ towards low-frequency functions, which yields faster learning of low-frequency components during training.
Inspired by such studies, we conduct a spectral analysis of the Tangent Kernel (NTK) of PNNs.
We find that the $Pi$-Net family, i.e., a recently proposed parametrization of PNNs, speeds up the
arXiv Detail & Related papers (2022-02-27T23:12:43Z) - Exponentially Many Local Minima in Quantum Neural Networks [9.442139459221785]
Quantum Neural Networks (QNNs) are important quantum applications because of their similar promises as classical neural networks.
We conduct a quantitative investigation on the landscape of loss functions of QNNs and identify a class of simple yet extremely hard QNN instances for training.
We empirically confirm that our constructions can indeed be hard instances in practice with typical gradient-based circuits.
arXiv Detail & Related papers (2021-10-06T03:23:44Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
We propose a novel neural network model named Quantum Convolutional Neural Network (QCNN)
QCNN is based on implementable quantum circuits and has a similar structure as classical convolutional neural networks.
Numerical simulation results on the MNIST dataset demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-07-08T06:47:34Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.