Spontaneous Speech-Based Suicide Risk Detection Using Whisper and Large Language Models
- URL: http://arxiv.org/abs/2406.03882v2
- Date: Tue, 9 Jul 2024 15:54:55 GMT
- Title: Spontaneous Speech-Based Suicide Risk Detection Using Whisper and Large Language Models
- Authors: Ziyun Cui, Chang Lei, Wen Wu, Yinan Duan, Diyang Qu, Ji Wu, Runsen Chen, Chao Zhang,
- Abstract summary: This paper studies the automatic detection of suicide risk based on spontaneous speech from adolescents.
The proposed system achieves a detection accuracy of 0.807 and an F1-score of 0.846 on the test set with 119 subjects.
- Score: 5.820498448651539
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The early detection of suicide risk is important since it enables the intervention to prevent potential suicide attempts. This paper studies the automatic detection of suicide risk based on spontaneous speech from adolescents, and collects a Mandarin dataset with 15 hours of suicide speech from more than a thousand adolescents aged from ten to eighteen for our experiments. To leverage the diverse acoustic and linguistic features embedded in spontaneous speech, both the Whisper speech model and textual large language models (LLMs) are used for suicide risk detection. Both all-parameter finetuning and parameter-efficient finetuning approaches are used to adapt the pre-trained models for suicide risk detection, and multiple audio-text fusion approaches are evaluated to combine the representations of Whisper and the LLM. The proposed system achieves a detection accuracy of 0.807 and an F1-score of 0.846 on the test set with 119 subjects, indicating promising potential for real suicide risk detection applications.
Related papers
- An Exploratory Deep Learning Approach for Predicting Subsequent Suicidal Acts in Chinese Psychological Support Hotlines [13.59130559079134]
The accuracy of scale-based predictive methods for suicide risk assessment can vary widely depending on the expertise of the operator.
This study is the first to apply deep learning to long-term speech data to predict suicide risk in China.
arXiv Detail & Related papers (2024-08-29T11:51:41Z) - Exploring Gender-Specific Speech Patterns in Automatic Suicide Risk Assessment [39.26231968260796]
This study involves a novel dataset comprising speech recordings of 20 patients who read neutral texts.
We extract four speech representations encompassing interpretable and deep features.
By applying gender-exclusive modelling, features extracted from an emotion fine-tuned wav2vec2.0 model can be utilised to discriminate high- from low- suicide risk with a balanced accuracy of 81%.
arXiv Detail & Related papers (2024-06-26T12:51:28Z) - SOS-1K: A Fine-grained Suicide Risk Classification Dataset for Chinese Social Media Analysis [22.709733830774788]
This study presents a Chinese social media dataset designed for fine-grained suicide risk classification.
Seven pre-trained models were evaluated in two tasks: high and low suicide risk, and fine-grained suicide risk classification on a level of 0 to 10.
Deep learning models show good performance in distinguishing between high and low suicide risk, with the best model achieving an F1 score of 88.39%.
arXiv Detail & Related papers (2024-04-19T06:58:51Z) - Non-Invasive Suicide Risk Prediction Through Speech Analysis [74.8396086718266]
We present a non-invasive, speech-based approach for automatic suicide risk assessment.
We extract three sets of features, including wav2vec, interpretable speech and acoustic features, and deep learning-based spectral representations.
Our most effective speech model achieves a balanced accuracy of $66.2,%$.
arXiv Detail & Related papers (2024-04-18T12:33:57Z) - Integrating Supervised Extractive and Generative Language Models for Suicide Risk Evidence Summarization [2.0969143947138016]
We propose a method that integrates supervised extractive and generative language models for providing supporting evidence of suicide risk.
First, we construct a BERT-based model for estimating sentence-level suicide risk and negative sentiment.
Next, we precisely identify high suicide risk sentences by emphasizing elevated probabilities of both suicide risk and negative sentiment.
Finally, we integrate generative summaries using the MentaLLaMa framework and extractive summaries from identified high suicide risk sentences and a specialized dictionary of suicidal risk words.
arXiv Detail & Related papers (2024-03-20T21:16:10Z) - DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-regressive Selective Replacement Ascent (ASRA) is a discrete optimization algorithm that selects prompts based on both quality and similarity with determinantal point process (DPP)
Experimental results on six different pre-trained language models demonstrate the efficacy of ASRA for eliciting toxic content.
arXiv Detail & Related papers (2024-03-01T05:28:06Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
This study aims at assessing the relevance of a signalprocessingalgorithm, initially developed in the field of language acquisition, for the automatic measurement of speech fluency.
arXiv Detail & Related papers (2023-08-09T07:51:40Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care and to delay further progression.
This paper investigates the use of prompt-based fine-tuning of PLMs that consistently uses AD classification errors as the training objective function.
arXiv Detail & Related papers (2022-10-29T09:18:41Z) - Detecting Suicide Risk in Online Counseling Services: A Study in a
Low-Resource Language [5.2636083103718505]
We propose a model that combines pre-trained language models (PLM) with a fixed set of manually crafted (and clinically approved) set of suicidal cues.
Our model achieves 0.91 ROC-AUC and an F2-score of 0.55, significantly outperforming an array of strong baselines even early on in the conversation.
arXiv Detail & Related papers (2022-09-11T10:06:14Z) - RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language
Models [93.151822563361]
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment.
We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration.
arXiv Detail & Related papers (2020-09-24T03:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.