論文の概要: BiomedBench: A benchmark suite of TinyML biomedical applications for low-power wearables
- arxiv url: http://arxiv.org/abs/2406.03886v1
- Date: Thu, 6 Jun 2024 09:24:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 15:39:42.157162
- Title: BiomedBench: A benchmark suite of TinyML biomedical applications for low-power wearables
- Title(参考訳): BiomedBench:低消費電力ウェアラブル向けTinyMLバイオメディカルアプリケーションのベンチマークスイート
- Authors: Dimitrios Samakovlis, Stefano Albini, Rubén Rodríguez Álvarez, Denisa-Andreea Constantinescu, Pasquale Davide Schiavone, Miguel Peón Quirós, David Atienza,
- Abstract要約: ウェアラブルデバイスを用いた患者のリアルタイムモニタリングのための,完全エンドツーエンドのTinyMLバイオメディカルアプリケーションからなる新しいベンチマークスイートを提案する。
BiomedBenchはオープンソーススイートとしてリリースされ、バイオエンジニアリングシステムとTinyMLアプリケーション設計の領域全体の将来の改善を可能にする。
- 参考スコア(独自算出の注目度): 3.7960023372037357
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The design of low-power wearables for the biomedical domain has received a lot of attention in recent decades, as technological advances in chip manufacturing have allowed real-time monitoring of patients using low-complexity ML within the mW range. Despite advances in application and hardware design research, the domain lacks a systematic approach to hardware evaluation. In this work, we propose BiomedBench, a new benchmark suite composed of complete end-to-end TinyML biomedical applications for real-time monitoring of patients using wearable devices. Each application presents different requirements during typical signal acquisition and processing phases, including varying computational workloads and relations between active and idle times. Furthermore, our evaluation of five state-of-the-art low-power platforms in terms of energy efficiency shows that modern platforms cannot effectively target all types of biomedical applications. BiomedBench will be released as an open-source suite to enable future improvements in the entire domain of bioengineering systems and TinyML application design.
- Abstract(参考訳): バイオメディカル領域における低消費電力ウェアラブルの設計は、チップ製造技術の進歩により、mW範囲内での低複雑さMLを用いた患者のリアルタイムモニタリングが可能となり、近年注目されている。
アプリケーションとハードウェアの設計研究の進歩にもかかわらず、このドメインはハードウェア評価に対する体系的なアプローチを欠いている。
本研究では,ウェアラブルデバイスを用いた患者のリアルタイムモニタリングのための,完全なエンドツーエンドTinyMLバイオメディカルアプリケーションからなるベンチマークスイートであるBiomedBenchを提案する。
各アプリケーションは、様々な計算処理やアクティブ時間とアイドル時間の関係を含む、典型的な信号取得と処理フェーズで異なる要件を提示する。
さらに、エネルギー効率の観点から、5つの最先端低消費電力プラットフォームを評価した結果、現代のプラットフォームは、あらゆる種類のバイオメディカル応用を効果的にターゲットできないことがわかった。
BiomedBenchはオープンソーススイートとしてリリースされ、バイオエンジニアリングシステムとTinyMLアプリケーション設計の領域全体の将来の改善を可能にする。
関連論文リスト
- Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - IoMT-Blockchain based Secured Remote Patient Monitoring Framework for
Neuro-Stimulation Device [0.0]
患者からのリアルタイムの知覚データは、ウェアラブルIoMTデバイスの迅速な開発を通じて配信され、分析される。
モノのインターネットからのデータは収集され、分析され、単一の場所に格納される。
分散した性質のため、ブロックチェーン(BC)はこれらの問題を緩和することができる。
論文 参考訳(メタデータ) (2023-08-31T16:59:58Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformerは、シーケンシャルデータ内のコンテキスト関係を理解するために自己認識メカニズムを使用するディープニューラルネットワークである。
Transformerモデルは、入力シーケンス要素間の長い依存関係を処理し、並列処理を可能にする。
我々の調査では、トランスフォーマーベースのモデルのためのトップ5のアプリケーションドメインを特定します。
論文 参考訳(メタデータ) (2023-06-11T23:13:51Z) - Quality-Based Conditional Processing in Multi-Biometrics: Application to
Sensor Interoperability [63.05238390013457]
2007年のバイオセキュリティ・マルチモーダル・アセスメント・キャンペーンにおいて,ATVS-UAM融合手法を品質ベースで評価し,評価を行った。
我々のアプローチは線形ロジスティック回帰に基づいており、融合したスコアはログライクな比率になる傾向にある。
その結果,提案手法はルールベースの核融合方式よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-11-24T12:11:22Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
機械学習(ML)アプローチのようなデータ駆動の手法は、大きな設計空間を合理的に探索する可能性が高い。
本研究の目的は,これまでのバイオプロセス開発におけるML手法の適用例を示すことである。
論文 参考訳(メタデータ) (2022-10-04T13:48:59Z) - Low-Power Hardware-Based Deep-Learning Diagnostics Support Case Study [6.011991689754301]
本稿では,PoCケーススタディのための顕微鏡診断支援システムの組み込みハードウェアによる実装を提案する。
我々はSqueeze-Netベースのモデルを用いてネットワークのサイズと時間を短縮する。
また,学習モデルのメモリフットプリントをさらに削減するために,トレーニング量子化技術を利用する。
論文 参考訳(メタデータ) (2022-09-03T22:41:52Z) - Many-to-One Knowledge Distillation of Real-Time Epileptic Seizure
Detection for Low-Power Wearable Internet of Things Systems [6.90334498220711]
低消費電力のウェアラブルIoTシステムと定期的な健康モニタリングを統合することは、現在進行中の課題である。
ウェアラブルの計算能力の最近の進歩により、複数のバイオシグナーを利用する複雑なシナリオをターゲットにすることが可能になった。
身体的に大きく、バイオシグナーをベースとしたウェアラブルは、患者にとって大きな不快感をもたらす。
本稿では,IoTウェアラブルシステムにおける単一生体信号処理を対象とした多対一信号の知識蒸留手法を提案する。
論文 参考訳(メタデータ) (2022-07-20T12:22:26Z) - Boosting Low-Resource Biomedical QA via Entity-Aware Masking Strategies [25.990479833023166]
バイオメディカル質問応答(QA)は、膨大な科学文献から高品質な情報を提供する能力に注目が集まっている。
バイオメディカル・エンティティ・アウェア・マスキング(BEM)と呼ばれるシンプルなアプローチを提案する。
マスク付き言語モデルにより、ドメインを特徴づける重要なエンティティに基づいてエンティティ中心の知識を学び、それらのエンティティをLM微調整の推進に活用します。
実験結果から, バイオメディカルQAデータセットにおける最先端モデルと同等の性能を示す。
論文 参考訳(メタデータ) (2021-02-16T18:51:13Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。