Noisy certification of continuous variables graph states
- URL: http://arxiv.org/abs/2406.03908v1
- Date: Thu, 6 Jun 2024 09:42:58 GMT
- Title: Noisy certification of continuous variables graph states
- Authors: Éloi Descamps, Damian Markham,
- Abstract summary: We show how CV graph states can be efficiently verified and certified even in a noisy and imperfect setting.
We then discuss how our findings impact the usability of states obtained after the protocol for different applications.
- Score: 1.534667887016089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous variables (CV) offer a promising platform for the development of various applications, such as quantum communication, computing, and sensing, and CV graph states represent a family of powerful entangled resource states for all these areas. In many of these protocols, a crucial aspect is the certification of the quantum state subsequently used. While numerous protocols exist, most rely on assumptions unrealistic for physical continuous variable states, such as infinite precision in quadrature measurement or the use of states requiring infinite squeezing. In this work, we adapt existing protocols to deal with these unavoidable considerations, and use them to certify their application for different quantum information tasks. More specifically, we show how CV graph states can be efficiently verified and certified even in a noisy and imperfect setting. We then discuss how our findings impact the usability of states obtained after the protocol for different applications, including quantum teleportation, computing, and sensing.
Related papers
- Efficient and Device-Independent Active Quantum State Certification [0.0]
Entangled quantum states are essential ingredients for many quantum technologies, but they must be validated before they are used.
Most existing approaches are based on preparing an ensemble of nominally identical and independent (IID) quantum states, and then measuring each copy of the ensemble.
We experimentally implement quantum state certification (QSC), which measures only a subset of the ensemble, certifying the fidelity of the remaining states.
arXiv Detail & Related papers (2024-07-18T21:54:13Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Security of a Continuous-Variable based Quantum Position Verification
Protocol [0.0]
We present and analyze a protocol that utilizes coherent states and its properties.
We prove security of the protocol against any unentangled attackers via entropic uncertainty relations.
We show that attackers who pre-share one continuous-variable EPR pair can break the protocol.
arXiv Detail & Related papers (2023-08-08T09:56:38Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Dynamical learning of a photonics quantum-state engineering process [48.7576911714538]
Experimentally engineering high-dimensional quantum states is a crucial task for several quantum information protocols.
We implement an automated adaptive optimization protocol to engineer photonic Orbital Angular Momentum (OAM) states.
This approach represents a powerful tool for automated optimizations of noisy experimental tasks for quantum information protocols and technologies.
arXiv Detail & Related papers (2022-01-14T19:24:31Z) - Efficient Verification of Boson Sampling Using a Quantum Computer [0.0]
We use the protocols given in the paper [arXiv:2006.03520] to construct a boson sampling experiment using discrete quantum states on IBM quantum computer.
We demonstrate the protocols for single mode fidelity estimation, multi mode fidelity estimation and a verification protocol using IBMQ "athens" chip.
arXiv Detail & Related papers (2021-08-09T11:41:15Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - Efficient verification of entangled continuous-variable quantum states
with local measurements [0.9825966924601679]
We establish a systematic framework for verifying entangled continuous-variable quantum states by employing local measurements only.
Our protocol is able to achieve the unconditionally high verification efficiency which is quadratically better than quantum tomography.
arXiv Detail & Related papers (2021-03-30T11:59:03Z) - Efficient verification of continuous-variable quantum states and devices
without assuming identical and independent operations [1.2862023695904006]
We propose the first set of reliable protocols for verifying multimode continuous-variable entangled states and devices.
Although not fully universal, these protocols are applicable to Gaussian quantum states, non-Gaussian hypergraph states, as well as amplification, attenuation, and purification of noisy coherent states.
arXiv Detail & Related papers (2020-12-07T15:26:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.