論文の概要: Neuro-Symbolic Temporal Point Processes
- arxiv url: http://arxiv.org/abs/2406.03914v1
- Date: Thu, 6 Jun 2024 09:52:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 15:29:45.883578
- Title: Neuro-Symbolic Temporal Point Processes
- Title(参考訳): ニューロシンボリック・テンポラルポイントプロセス
- Authors: Yang Yang, Chao Yang, Boyang Li, Yinghao Fu, Shuang Li,
- Abstract要約: 本稿では,時間点プロセスモデルにニューラル・シンボリック・ルール誘導フレームワークを導入する。
負の対数類似性は学習を導く損失であり、説明論理則とその重みがエンドツーエンドで学習される。
提案手法は, 合成データセットおよび実データセット間で, 顕著な効率性と精度を示す。
- 参考スコア(独自算出の注目度): 13.72758658973969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our goal is to $\textit{efficiently}$ discover a compact set of temporal logic rules to explain irregular events of interest. We introduce a neural-symbolic rule induction framework within the temporal point process model. The negative log-likelihood is the loss that guides the learning, where the explanatory logic rules and their weights are learned end-to-end in a $\textit{differentiable}$ way. Specifically, predicates and logic rules are represented as $\textit{vector embeddings}$, where the predicate embeddings are fixed and the rule embeddings are trained via gradient descent to obtain the most appropriate compositional representations of the predicate embeddings. To make the rule learning process more efficient and flexible, we adopt a $\textit{sequential covering algorithm}$, which progressively adds rules to the model and removes the event sequences that have been explained until all event sequences have been covered. All the found rules will be fed back to the models for a final rule embedding and weight refinement. Our approach showcases notable efficiency and accuracy across synthetic and real datasets, surpassing state-of-the-art baselines by a wide margin in terms of efficiency.
- Abstract(参考訳): 私たちのゴールは、不規則な関心事を説明するための時間論理ルールのコンパクトなセットを見つけることです。
本稿では,時間点プロセスモデルにニューラル・シンボリック・ルール誘導フレームワークを導入する。
負の対数類似性は学習を導く損失であり、説明論理規則とその重みが$\textit{differentiable}$方法でエンドツーエンドに学習される。
具体的には、述語と論理規則は $\textit{vector embeddeddings}$ と表現され、述語埋め込みは固定され、規則埋め込みは勾配勾配によって訓練され、述語埋め込みの最も適切な構成表現が得られる。
ルール学習プロセスをより効率的かつ柔軟にするために、$\textit{sequential cover algorithm}$を採用し、モデルに規則を徐々に追加し、すべてのイベントシーケンスがカバーされるまで説明されたイベントシーケンスを削除する。
見つかったすべてのルールは、最終ルールの埋め込みと重み付けのためにモデルに返される。
提案手法は, 合成データセットと実データセットをまたいだ顕著な効率と精度を示し, 効率の面で最先端のベースラインをはるかに上回っている。
関連論文リスト
- ChatRule: Mining Logical Rules with Large Language Models for Knowledge
Graph Reasoning [107.61997887260056]
そこで我々は,知識グラフ上の論理ルールをマイニングするための大規模言語モデルの力を解き放つ新しいフレームワークChatRuleを提案する。
具体的には、このフレームワークは、KGのセマンティック情報と構造情報の両方を活用するLLMベースのルールジェネレータで開始される。
生成されたルールを洗練させるために、ルールランキングモジュールは、既存のKGから事実を取り入れてルール品質を推定する。
論文 参考訳(メタデータ) (2023-09-04T11:38:02Z) - Reinforcement Logic Rule Learning for Temporal Point Processes [17.535382791003176]
本稿では,時間的事象の発生を説明するための説明的時間論理則を漸進的に拡張するフレームワークを提案する。
提案アルゴリズムは、現在のルールセットの重みが更新されるマスター問題と、新しいルールを探索し、その可能性を高めるために含めるサブプロブレムとを交互に行う。
人工的および実際の医療データセットにおいて,提案手法の評価を行い,有望な結果を得た。
論文 参考訳(メタデータ) (2023-08-11T12:05:32Z) - Logical Entity Representation in Knowledge-Graphs for Differentiable
Rule Learning [71.05093203007357]
本稿では,知識グラフ内のエンティティのコンテキスト情報をエンコードするための論理エンティティ・リプレゼンテーション(LERP)を提案する。
LERPは、エンティティの隣接部分グラフ上の確率論的論理関数のベクトルとして設計されている。
我々のモデルは知識グラフ補完において他のルール学習法よりも優れており、最先端のブラックボックス法に匹敵する、あるいは優れている。
論文 参考訳(メタデータ) (2023-05-22T05:59:22Z) - RulE: Knowledge Graph Reasoning with Rule Embedding [69.31451649090661]
我々は、論理ルールを活用してKG推論を強化する、textbfRulE(ルール埋め込みのためのスタンド)と呼ばれる原則的なフレームワークを提案する。
RulEは、既存の三重項と一階規則からルールの埋め込みを学習し、統一された埋め込み空間において、textbfentities、textbfrelations、textbflogical rulesを共同で表現する。
複数のベンチマークの結果、我々のモデルは既存の埋め込みベースのアプローチやルールベースのアプローチよりも優れています。
論文 参考訳(メタデータ) (2022-10-24T06:47:13Z) - Differentiable Rule Induction with Learned Relational Features [9.193818627108572]
Rule Network(RRN)は、属性間の線形関係を表す述語とそれらを使用するルールを学習するニューラルネットワークである。
ベンチマークタスクでは、これらの述語は解釈可能性を維持するのに十分単純であるが、予測精度を改善し、アートルール誘導アルゴリズムの状態と比較してより簡潔なルールセットを提供する。
論文 参考訳(メタデータ) (2022-01-17T16:46:50Z) - LNN-EL: A Neuro-Symbolic Approach to Short-text Entity Linking [62.634516517844496]
本稿では,解釈可能なルールとニューラルネットワークの性能を併用したニューラルシンボリックアプローチであるLNN-ELを提案する。
ルールの使用に制約があるにもかかわらず、LNN-ELはSotAのブラックボックスニューラルアプローチと競合する。
論文 参考訳(メタデータ) (2021-06-17T20:22:45Z) - RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs [91.71504177786792]
本稿では知識グラフに基づく推論のための論理規則の学習について研究する。
論理規則は、予測に使用されるときに解釈可能な説明を提供するとともに、他のタスクに一般化することができる。
既存の手法は、検索スペースの検索の問題や、スパース報酬による非効率な最適化に悩まされている。
論文 参考訳(メタデータ) (2020-10-08T14:47:02Z) - Increasing the Inference and Learning Speed of Tsetlin Machines with
Clause Indexing [9.440900386313215]
Tsetlin Machine (TM) は、古典的なTsetlin Automaton (TA) とゲーム理論に基づいて開発された機械学習アルゴリズムである。
我々は,MNISTとFashion-MNISTの画像分類とIMDbの感情分析を最大15倍,学習速度が3倍に向上したことを報告した。
論文 参考訳(メタデータ) (2020-04-07T08:16:07Z) - Towards Learning Instantiated Logical Rules from Knowledge Graphs [20.251630903853016]
本稿では,知識グラフから一階述語論理規則を抽出するために最適化された確率論的学習ルールGPFLを提案する。
GPFLは、抽出された経路を非循環的な抽象規則であるテンプレートに一般化する新しい2段階ルール生成機構を利用する。
オーバーフィッティングルールの存在、予測性能への影響、およびオーバーフィッティングルールをフィルタリングする単純なバリデーション手法の有効性を明らかにする。
論文 参考訳(メタデータ) (2020-03-13T00:32:46Z) - Structured Prediction with Partial Labelling through the Infimum Loss [85.4940853372503]
弱い監督の目標は、収集コストの安いラベル付け形式のみを使用してモデルを学習できるようにすることである。
これは、各データポイントに対して、実際のものを含むラベルのセットとして、監督がキャストされる不完全なアノテーションの一種です。
本稿では、構造化された予測と、部分的なラベリングを扱うための無限損失の概念に基づく統一的なフレームワークを提供する。
論文 参考訳(メタデータ) (2020-03-02T13:59:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。