論文の概要: Neuro-Symbolic Rule Lists
- arxiv url: http://arxiv.org/abs/2411.06428v1
- Date: Sun, 10 Nov 2024 11:10:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:13:01.354531
- Title: Neuro-Symbolic Rule Lists
- Title(参考訳): ニューロ・シンボリック・ルールリスト
- Authors: Sascha Xu, Nils Philipp Walter, Jilles Vreeken,
- Abstract要約: NeuRulesは、識別、ルール学習、ルール順序を単一のフレームワークに統合するエンドツーエンドのトレーニング可能なモデルである。
我々は、NeuRulesがニューラルシンボリックな手法を一貫して上回り、幅広いデータセットにわたって、シンプルで複雑なルールとそれらの順序を効果的に学習していることを示す。
- 参考スコア(独自算出の注目度): 31.085257698392354
- License:
- Abstract: Machine learning models deployed in sensitive areas such as healthcare must be interpretable to ensure accountability and fairness. Rule lists (if Age < 35 $\wedge$ Priors > 0 then Recidivism = True, else if Next Condition . . . ) offer full transparency, making them well-suited for high-stakes decisions. However, learning such rule lists presents significant challenges. Existing methods based on combinatorial optimization require feature pre-discretization and impose restrictions on rule size. Neuro-symbolic methods use more scalable continuous optimization yet place similar pre-discretization constraints and suffer from unstable optimization. To address the existing limitations, we introduce NeuRules, an end-to-end trainable model that unifies discretization, rule learning, and rule order into a single differentiable framework. We formulate a continuous relaxation of the rule list learning problem that converges to a strict rule list through temperature annealing. NeuRules learns both the discretizations of individual features, as well as their combination into conjunctive rules without any pre-processing or restrictions. Extensive experiments demonstrate that NeuRules consistently outperforms both combinatorial and neuro-symbolic methods, effectively learning simple and complex rules, as well as their order, across a wide range of datasets.
- Abstract(参考訳): 医療などのセンシティブな分野に展開される機械学習モデルは、説明責任と公正性を保証するために解釈されなければならない。
ルールリスト ( Age < 35 $\wedge$ Priors > 0) ならば、Recidivism = True, else if Next Condition . ) は完全な透明性を提供し、高い意思決定に適しています。
しかし、このようなルールリストの学習には大きな課題が伴う。
組合せ最適化に基づく既存の手法では、特徴の事前分散とルールサイズ制限が要求される。
ニューロシンボリック法は、よりスケーラブルな連続最適化を用いるが、同様の事前離散化制約を課し、不安定な最適化に悩まされる。
既存の制限に対処するために、差別化、ルール学習、ルール順序を単一の差別化可能なフレームワークに統合するエンドツーエンドのトレーニング可能なモデルであるNeuRulesを紹介します。
温度アニールにより厳密な規則リストに収束する規則リスト学習問題を連続的に緩和する。
NeuRulesは個々の特徴の識別と、前処理や制限なしに結合ルールに組み合わせることの両方を学ぶ。
大規模な実験では、NeuRulesは組合せ法とニューロシンボリック法の両方を一貫して上回り、広範囲のデータセットで、単純で複雑な規則とそれらの順序を効果的に学習している。
関連論文リスト
- SoFA: Shielded On-the-fly Alignment via Priority Rule Following [90.32819418613407]
本稿では,各ダイアログにおけるルールを主制御機構として定義する,新たなアライメントパラダイムである優先ルールを提案する。
そこで本研究では,厳密な規則統合と固着性を確保するために,シミュレーションから優先信号に従う半自動蒸留手法であるプライオリティディスティルを提案する。
論文 参考訳(メタデータ) (2024-02-27T09:52:27Z) - Toward Unified Controllable Text Generation via Regular Expression
Instruction [56.68753672187368]
本稿では,正規表現の利点をフル活用し,多様な制約を一様にモデル化する命令ベース機構を用いた正規表現指導(REI)を提案する。
提案手法では,中規模言語モデルの微調整や,大規模言語モデルでの少数ショット・インコンテクスト学習のみを要し,各種制約の組み合わせに適用した場合のさらなる調整は不要である。
論文 参考訳(メタデータ) (2023-09-19T09:05:14Z) - Reinforcement Logic Rule Learning for Temporal Point Processes [17.535382791003176]
本稿では,時間的事象の発生を説明するための説明的時間論理則を漸進的に拡張するフレームワークを提案する。
提案アルゴリズムは、現在のルールセットの重みが更新されるマスター問題と、新しいルールを探索し、その可能性を高めるために含めるサブプロブレムとを交互に行う。
人工的および実際の医療データセットにおいて,提案手法の評価を行い,有望な結果を得た。
論文 参考訳(メタデータ) (2023-08-11T12:05:32Z) - On Regularization and Inference with Label Constraints [62.60903248392479]
機械学習パイプラインにおけるラベル制約を符号化するための2つの戦略、制約付き正規化、制約付き推論を比較した。
正規化については、制約に不整合なモデルを前置することで一般化ギャップを狭めることを示す。
制約付き推論では、モデルの違反を訂正することで人口リスクを低減し、それによってその違反を有利にすることを示す。
論文 参考訳(メタデータ) (2023-07-08T03:39:22Z) - Truly Unordered Probabilistic Rule Sets for Multi-class Classification [0.0]
真に順序のない規則集合に対するTURSを提案する。
まず、真に順序のない規則集合を学習する問題を定式化する。
次に、ルールを慎重に成長させることでルール集合を学習する2相アルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-06-17T14:34:35Z) - Differentiable Rule Induction with Learned Relational Features [9.193818627108572]
Rule Network(RRN)は、属性間の線形関係を表す述語とそれらを使用するルールを学習するニューラルネットワークである。
ベンチマークタスクでは、これらの述語は解釈可能性を維持するのに十分単純であるが、予測精度を改善し、アートルール誘導アルゴリズムの状態と比較してより簡潔なルールセットを提供する。
論文 参考訳(メタデータ) (2022-01-17T16:46:50Z) - Discovering Useful Compact Sets of Sequential Rules in a Long Sequence [57.684967309375274]
COSSUは、小さな、意味のある一連の規則をマイニングするアルゴリズムである。
COSSUは、長いシーケンスから、関連するクローズド・シーケンシャル・ルールの集合を検索できることを示す。
論文 参考訳(メタデータ) (2021-09-15T18:25:18Z) - LNN-EL: A Neuro-Symbolic Approach to Short-text Entity Linking [62.634516517844496]
本稿では,解釈可能なルールとニューラルネットワークの性能を併用したニューラルシンボリックアプローチであるLNN-ELを提案する。
ルールの使用に制約があるにもかかわらず、LNN-ELはSotAのブラックボックスニューラルアプローチと競合する。
論文 参考訳(メタデータ) (2021-06-17T20:22:45Z) - Better Short than Greedy: Interpretable Models through Optimal Rule
Boosting [10.938624307941197]
ルールアンサンブルは、予測精度とモデル解釈可能性の間の有用なトレードオフを提供するように設計されている。
与えられたアンサンブルサイズに対して最大予測力の規則アンサンブルを適合させる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-01-21T01:03:48Z) - Rewriting a Deep Generative Model [56.91974064348137]
我々は,深層生成モデルによって符号化された特定の規則の操作という,新たな問題設定を導入する。
本稿では,ディープネットワークの層を線形連想メモリとして操作することで,所望のルールを変更する定式化を提案する。
本稿では,生成モデルのルールを対話的に変更し,望ましい効果を得られるユーザインタフェースを提案する。
論文 参考訳(メタデータ) (2020-07-30T17:58:16Z) - Diverse Rule Sets [20.170305081348328]
ルールベースのシステムは、直感的なif-then表現のためにルネッサンスを経験しています。
本稿では,ルール間の重なり合いを最適化することで,多様なルールセットを推定する新しい手法を提案する。
次に、高い差別性を持ち、重複が少ない規則をサンプリングする効率的なランダム化アルゴリズムを考案する。
論文 参考訳(メタデータ) (2020-06-17T14:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。