論文の概要: LNQ Challenge 2023: Learning Mediastinal Lymph Node Segmentation with a Probabilistic Lymph Node Atlas
- arxiv url: http://arxiv.org/abs/2406.03984v1
- Date: Thu, 6 Jun 2024 11:57:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 15:10:00.874248
- Title: LNQ Challenge 2023: Learning Mediastinal Lymph Node Segmentation with a Probabilistic Lymph Node Atlas
- Title(参考訳): LNQ Challenge 2023: Probabilistic Lymph Node Atlasを用いた縦隔リンパ節郭清の学習
- Authors: Sofija Engelson, Jan Ehrhardt, Timo Kepp, Joshua Niemeijer, Heinz Handels,
- Abstract要約: リンパ節転移の評価は、正確ながん転移を達成する上で重要な役割を担っている。
リンパ節検出は、境界が不明確であり、様々な大きさと形態的特徴があるため、課題となる。
LNQ 2023 MICCAIチャレンジの一環として,課題に対処するためのツールとして解剖学的先行性(anatomical priors)を提案する。
- 参考スコア(独自算出の注目度): 0.010416625072338245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evaluation of lymph node metastases plays a crucial role in achieving precise cancer staging, influencing subsequent decisions regarding treatment options. Lymph node detection poses challenges due to the presence of unclear boundaries and the diverse range of sizes and morphological characteristics, making it a resource-intensive process. As part of the LNQ 2023 MICCAI challenge, we propose the use of anatomical priors as a tool to address the challenges that persist in mediastinal lymph node segmentation in combination with the partial annotation of the challenge training data. The model ensemble using all suggested modifications yields a Dice score of 0.6033 and segments 57% of the ground truth lymph nodes, compared to 27% when training on CT only. Segmentation accuracy is improved significantly by incorporating a probabilistic lymph node atlas in loss weighting and post-processing. The largest performance gains are achieved by oversampling fully annotated data to account for the partial annotation of the challenge training data, as well as adding additional data augmentation to address the high heterogeneity of the CT images and lymph node appearance. Our code is available at https://github.com/MICAI-IMI-UzL/LNQ2023.
- Abstract(参考訳): リンパ節転移の評価は、正確ながん転移を達成する上で重要な役割を担い、治療オプションに関するその後の決定に影響を及ぼす。
リンパ節検出は、境界が不明確であり、様々な大きさと形態的特徴があるため、資源集約的なプロセスである。
LNQ 2023 MICCAIチャレンジの一環として,縦隔リンパ節分節に持続する課題と,課題トレーニングデータの部分的アノテーションを併用するツールとして,解剖学的先行性(anatomical priors)を提案する。
モデルアンサンブルでは、Diceスコアは0.6033で、接地真性リンパ節の57%であり、CTのみのトレーニングでは27%である。
損失重み付けと後処理に確率的リンパ節アトラスを組み込むことにより, セグメンテーション精度を著しく向上させる。
最大のパフォーマンス向上は、完全注釈付きデータをオーバーサンプリングしてチャレンジトレーニングデータの部分アノテーションを考慮し、CT画像の高均一性やリンパ節の外観に対処するための追加データを追加することで達成される。
私たちのコードはhttps://github.com/MICAI-IMI-UzL/LNQ2023で公開されています。
関連論文リスト
- SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images [38.69240497671607]
リンパ節を効果的に検出するSwing-Det Fusion Network (SDF-Net)を提案する。
SDF-Netはセグメンテーションと検出の両方の機能を統合し、さまざまな形状と大きさのリンパ節の検出能力を向上する。
論文 参考訳(メタデータ) (2024-09-10T08:27:44Z) - Weakly Supervised Lymph Nodes Segmentation Based on Partial Instance Annotations with Pre-trained Dual-branch Network and Pseudo Label Learning [6.722923391378295]
そこで本研究では, 動的混合擬似ラベル(DBDMP)を用いたプレトレーニングDual-Branchネットワークを提案し, リンパ節セグメンテーションのための部分的インスタンスアノテーションから学習する。
本手法は,Dice similarity Coefficient (DSC) を11.04%から54.10%に改善し,平均対称表面距離 (ASSD) を20.83 $mm$から8.72 $mm$に低減する。
論文 参考訳(メタデータ) (2024-08-18T08:54:53Z) - Mask the Unknown: Assessing Different Strategies to Handle Weak Annotations in the MICCAI2023 Mediastinal Lymph Node Quantification Challenge [2.1994532511228773]
MICCAI 2023 Lymph Node Quantification Challengeは、縦隔の病理リンパ節分節に関する最初の公開データセットを発表した。
リンパ節アノテーションは高価であるため、この課題は、トレーニングセット内のすべてのリンパ節のサブセットだけが注釈付けされている弱い教師付き学習タスクとして形成された。
課題として,ノイズラベルトレーニングやラベルなしデータの損失マスキング,TotalSegmentatorツールボックスを擬似ラベリングの形式として組み込んだアプローチなど,弱教師付きデータのトレーニング方法が検討された。
提案したモデルではDiceスコアが0.628、平均対称表面距離が0.628に達した。
論文 参考訳(メタデータ) (2024-06-20T14:38:33Z) - Meply: A Large-scale Dataset and Baseline Evaluations for Metastatic Perirectal Lymph Node Detection and Segmentation [10.250943622693429]
今回,Meply という大規模な直腸転移性リンパ節CT画像データセットを初めて紹介した。
本稿では,新しいリンパ節分節モデルであるCoSAMを紹介する。
CoSAMは、直腸癌における転移性リンパ節の分節を誘導する配列に基づく検出を利用する。
論文 参考訳(メタデータ) (2024-04-13T07:30:16Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
新型コロナウイルス(COVID-19)は、世界中の医療システムに悪影響を及ぼし続けている。
現段階では、新型コロナウイルスの診断と治療には、CT画像から肺感染症領域を自動的に分離することが不可欠である。
本稿では,境界案内型セマンティックラーニングネットワーク(BSNet)を提案する。
論文 参考訳(メタデータ) (2022-09-07T05:01:38Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
この課題には10,091個のパッチレベルのアノテーションと1300万以上のラベル付きピクセルが含まれる。
第一位チームは0.8413mIoUを達成した(腫瘍:0.8389、ストーマ:0.7931、正常:0.8919)。
論文 参考訳(メタデータ) (2022-04-13T15:27:05Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
本研究は、新型コロナウイルスの肺病変の同定、セグメント化、定量化のために人工知能(AI)を活用することを目的とする。
2つのU-netのカスケードをベースとした自動解析パイプラインLungQuantシステムを開発した。
LungQuantシステムにおけるCT-Severity Score(CT-SS)の精度も評価した。
論文 参考訳(メタデータ) (2021-05-06T10:21:28Z) - Mediastinal lymph nodes segmentation using 3D convolutional neural
network ensembles and anatomical priors guiding [0.0]
拡大および潜在的悪性リンパ節の存在を評価し、疾患の進行を適切に推定し、最良の治療戦略を選択する必要があります。
3D畳み込みニューラルネットワークの使用について,スラブ方式や全ボリュームのダウンサンプリングを利用する方法を検討した。
短軸直径$geq10$ mmの1178リンパ節では、私たちの最高のパフォーマンスアプローチは92%の患者ワイズリコール、5の患者ごとの偽陽性比と80.5%の分割重複に達しました。
論文 参考訳(メタデータ) (2021-02-11T14:51:34Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。