論文の概要: SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images
- arxiv url: http://arxiv.org/abs/2409.06324v1
- Date: Tue, 10 Sep 2024 08:27:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 18:30:15.433772
- Title: SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images
- Title(参考訳): SDF-Net:造影CT画像を用いた縦隔リンパ節検出のためのハイブリッド検出ネットワーク
- Authors: Jiuli Xiong, Lanzhuju Mei, Jiameng Liu, Dinggang Shen, Zhong Xue, Xiaohuan Cao,
- Abstract要約: リンパ節を効果的に検出するSwing-Det Fusion Network (SDF-Net)を提案する。
SDF-Netはセグメンテーションと検出の両方の機能を統合し、さまざまな形状と大きさのリンパ節の検出能力を向上する。
- 参考スコア(独自算出の注目度): 38.69240497671607
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate lymph node detection and quantification are crucial for cancer diagnosis and staging on contrast-enhanced CT images, as they impact treatment planning and prognosis. However, detecting lymph nodes in the mediastinal area poses challenges due to their low contrast, irregular shapes and dispersed distribution. In this paper, we propose a Swin-Det Fusion Network (SDF-Net) to effectively detect lymph nodes. SDF-Net integrates features from both segmentation and detection to enhance the detection capability of lymph nodes with various shapes and sizes. Specifically, an auto-fusion module is designed to merge the feature maps of segmentation and detection networks at different levels. To facilitate effective learning without mask annotations, we introduce a shape-adaptive Gaussian kernel to represent lymph node in the training stage and provide more anatomical information for effective learning. Comparative results demonstrate promising performance in addressing the complex lymph node detection problem.
- Abstract(参考訳): リンパ節の正確な検出と定量化は、治療計画や予後に影響を及ぼすため、造影CT画像の診断とステージングに不可欠である。
しかし、縦隔領域のリンパ節の検出は、その低コントラスト、不規則な形状、分散分布のために困難を生じさせる。
本稿では,リンパ節を効果的に検出するSwing-Det Fusion Network (SDF-Net)を提案する。
SDF-Netはセグメンテーションと検出の両方の機能を統合し、さまざまな形状と大きさのリンパ節の検出能力を向上する。
具体的には、自動融合モジュールは、セグメンテーションと検出ネットワークの機能マップを異なるレベルでマージするように設計されている。
マスクアノテーションを使わずに効果的な学習を容易にするため,訓練段階におけるリンパ節表現のための形状適応型ガウスカーネルを導入し,効果的な学習のための解剖学的情報を提供する。
その結果、複雑なリンパ節検出問題に対処する上で有望な性能を示した。
関連論文リスト
- Weakly Supervised Lymph Nodes Segmentation Based on Partial Instance Annotations with Pre-trained Dual-branch Network and Pseudo Label Learning [6.722923391378295]
そこで本研究では, 動的混合擬似ラベル(DBDMP)を用いたプレトレーニングDual-Branchネットワークを提案し, リンパ節セグメンテーションのための部分的インスタンスアノテーションから学習する。
本手法は,Dice similarity Coefficient (DSC) を11.04%から54.10%に改善し,平均対称表面距離 (ASSD) を20.83 $mm$から8.72 $mm$に低減する。
論文 参考訳(メタデータ) (2024-08-18T08:54:53Z) - LNQ Challenge 2023: Learning Mediastinal Lymph Node Segmentation with a Probabilistic Lymph Node Atlas [0.010416625072338245]
リンパ節転移の評価は、正確ながん転移を達成する上で重要な役割を担っている。
リンパ節検出は、境界が不明確であり、様々な大きさと形態的特徴があるため、課題となる。
LNQ 2023 MICCAIチャレンジの一環として,課題に対処するためのツールとして解剖学的先行性(anatomical priors)を提案する。
論文 参考訳(メタデータ) (2024-06-06T11:57:25Z) - CT Synthesis with Conditional Diffusion Models for Abdominal Lymph Node Segmentation [12.226538753367965]
本稿では,リンパ節郭清のための条件拡散モデルとnnU-Netモデルを統合するパイプラインを提案する。
LN-DDPMはリンパ節マスクと解剖学的構造マスクをモデル条件として利用する。
腹部リンパ節データセットを用いた実験の結果,LN-DDPMは腹部リンパ節画像合成において他の生成法よりも優れており,下腹部リンパ節セグメント化作業の助けとなることが明らかとなった。
論文 参考訳(メタデータ) (2024-03-26T14:59:11Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - A Weakly Supervised Segmentation Network Embedding Cross-scale Attention
Guidance and Noise-sensitive Constraint for Detecting Tertiary Lymphoid
Structures of Pancreatic Tumors [19.775101438245272]
膵病理像における3次リンパ構造(TLS)の存在は膵腫瘍の予後を示す重要な指標である。
数発の学習でTLSを検出するために,弱い教師付きセグメンテーションネットワークを提案する。
得られた2つのデータセットに対する実験結果から,提案手法はTLSの検出精度において,最先端のセグメンテーションに基づくアルゴリズムよりも有意に優れていることが示された。
論文 参考訳(メタデータ) (2023-07-27T03:25:09Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
新型コロナウイルス(COVID-19)は、世界中の医療システムに悪影響を及ぼし続けている。
現段階では、新型コロナウイルスの診断と治療には、CT画像から肺感染症領域を自動的に分離することが不可欠である。
本稿では,境界案内型セマンティックラーニングネットワーク(BSNet)を提案する。
論文 参考訳(メタデータ) (2022-09-07T05:01:38Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
我々は,大域的誘導ブロック(GGB)と乳房病変境界検出モジュールを備えた深部畳み込みニューラルネットワークを開発した。
当社のネットワークは、乳房超音波病変分割における他の医療画像分割方法および最近のセマンティックセグメンテーション方法よりも優れています。
論文 参考訳(メタデータ) (2021-04-05T13:15:22Z) - Mediastinal lymph nodes segmentation using 3D convolutional neural
network ensembles and anatomical priors guiding [0.0]
拡大および潜在的悪性リンパ節の存在を評価し、疾患の進行を適切に推定し、最良の治療戦略を選択する必要があります。
3D畳み込みニューラルネットワークの使用について,スラブ方式や全ボリュームのダウンサンプリングを利用する方法を検討した。
短軸直径$geq10$ mmの1178リンパ節では、私たちの最高のパフォーマンスアプローチは92%の患者ワイズリコール、5の患者ごとの偽陽性比と80.5%の分割重複に達しました。
論文 参考訳(メタデータ) (2021-02-11T14:51:34Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。