Unveiling the Dynamics of Information Interplay in Supervised Learning
- URL: http://arxiv.org/abs/2406.03999v1
- Date: Thu, 6 Jun 2024 12:17:57 GMT
- Title: Unveiling the Dynamics of Information Interplay in Supervised Learning
- Authors: Kun Song, Zhiquan Tan, Bochao Zou, Huimin Ma, Weiran Huang,
- Abstract summary: We use matrix information theory as an analytical tool to analyze the dynamics of the information interplay between data representations and classification head vectors in the supervised learning process.
Our experiments show that MIR and HDR can effectively explain many phenomena occurring in neural networks.
We introduce MIR and HDR loss terms in supervised and semi-supervised learning to optimize the information interactions among samples and classification heads.
- Score: 10.122733373023074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we use matrix information theory as an analytical tool to analyze the dynamics of the information interplay between data representations and classification head vectors in the supervised learning process. Specifically, inspired by the theory of Neural Collapse, we introduce matrix mutual information ratio (MIR) and matrix entropy difference ratio (HDR) to assess the interactions of data representation and class classification heads in supervised learning, and we determine the theoretical optimal values for MIR and HDR when Neural Collapse happens. Our experiments show that MIR and HDR can effectively explain many phenomena occurring in neural networks, for example, the standard supervised training dynamics, linear mode connectivity, and the performance of label smoothing and pruning. Additionally, we use MIR and HDR to gain insights into the dynamics of grokking, which is an intriguing phenomenon observed in supervised training, where the model demonstrates generalization capabilities long after it has learned to fit the training data. Furthermore, we introduce MIR and HDR as loss terms in supervised and semi-supervised learning to optimize the information interactions among samples and classification heads. The empirical results provide evidence of the method's effectiveness, demonstrating that the utilization of MIR and HDR not only aids in comprehending the dynamics throughout the training process but can also enhances the training procedure itself.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Exploring Information-Theoretic Metrics Associated with Neural Collapse in Supervised Training [14.9343236333741]
We utilize information-theoretic metrics like matrix entropy and mutual information to analyze supervised learning.
We show that matrix entropy cannot solely describe the interaction of the information content of data representation and classification head weights but it can effectively reflect the similarity and clustering behavior of the data.
arXiv Detail & Related papers (2024-09-25T09:26:06Z) - Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron [3.069335774032178]
We use a dataset-process approach to derive flow equations describing learning.
We characterize the effects of the learning rule (supervised or reinforcement learning, SL/RL) and input-data distribution on the perceptron's learning curve.
This approach points a way toward analyzing learning dynamics for more-complex circuit architectures.
arXiv Detail & Related papers (2024-09-05T17:58:28Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - Joint-Embedding Masked Autoencoder for Self-supervised Learning of
Dynamic Functional Connectivity from the Human Brain [18.165807360855435]
Graph Neural Networks (GNNs) have shown promise in learning dynamic functional connectivity for distinguishing phenotypes from human brain networks.
We introduce the Spatio-Temporal Joint Embedding Masked Autoencoder (ST-JEMA), drawing inspiration from the Joint Embedding Predictive Architecture (JEPA) in computer vision.
arXiv Detail & Related papers (2024-03-11T04:49:41Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Evaluating deep transfer learning for whole-brain cognitive decoding [11.898286908882561]
Transfer learning (TL) is well-suited to improve the performance of deep learning (DL) models in datasets with small numbers of samples.
Here, we evaluate TL for the application of DL models to the decoding of cognitive states from whole-brain functional Magnetic Resonance Imaging (fMRI) data.
arXiv Detail & Related papers (2021-11-01T15:44:49Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.