Linear Opinion Pooling for Uncertainty Quantification on Graphs
- URL: http://arxiv.org/abs/2406.04041v1
- Date: Thu, 6 Jun 2024 13:10:37 GMT
- Title: Linear Opinion Pooling for Uncertainty Quantification on Graphs
- Authors: Clemens Damke, Eyke Hüllermeier,
- Abstract summary: We propose a novel approach that represents (epistemic) uncertainty in terms of mixtures of Dirichlet distributions.
The effectiveness of this approach is demonstrated in a series of experiments on a variety of graph-structured datasets.
- Score: 21.602569813024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of uncertainty quantification for graph-structured data, or, more specifically, the problem to quantify the predictive uncertainty in (semi-supervised) node classification. Key questions in this regard concern the distinction between two different types of uncertainty, aleatoric and epistemic, and how to support uncertainty quantification by leveraging the structural information provided by the graph topology. Challenging assumptions and postulates of state-of-the-art methods, we propose a novel approach that represents (epistemic) uncertainty in terms of mixtures of Dirichlet distributions and refers to the established principle of linear opinion pooling for propagating information between neighbored nodes in the graph. The effectiveness of this approach is demonstrated in a series of experiments on a variety of graph-structured datasets.
Related papers
- Variational DAG Estimation via State Augmentation With Stochastic Permutations [16.57658783816741]
Estimating the structure of a Bayesian network from observational data is a statistically and computationally hard problem.
From a probabilistic inference perspective, the main challenges are (i) representing distributions over graphs that satisfy the DAG constraint and (ii) estimating a posterior over the underlying space.
We propose an approach that addresses these challenges by formulating a joint distribution on an augmented space of DAGs and permutations.
arXiv Detail & Related papers (2024-02-04T23:51:04Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - MixupExplainer: Generalizing Explanations for Graph Neural Networks with
Data Augmentation [6.307753856507624]
Graph Neural Networks (GNNs) have received increasing attention due to their ability to learn from graph-structured data.
Post-hoc instance-level explanation methods have been proposed to understand GNN predictions.
We shed light on the existence of the distribution shifting issue in existing methods, which affects explanation quality.
arXiv Detail & Related papers (2023-07-15T15:46:38Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
We prove strong identifiability results given unknown single-node interventions without access to the intervention targets.
This is the first instance of causal identifiability from non-paired interventions for deep neural network embeddings.
arXiv Detail & Related papers (2023-06-04T02:32:12Z) - A General Framework for quantifying Aleatoric and Epistemic uncertainty
in Graph Neural Networks [0.29494468099506893]
Graph Neural Networks (GNN) provide a powerful framework that elegantly integrates Graph theory with Machine learning.
We consider the problem of quantifying the uncertainty in predictions of GNN stemming from modeling errors and measurement uncertainty.
We propose a unified approach to treat both sources of uncertainty in a Bayesian framework.
arXiv Detail & Related papers (2022-05-20T05:25:40Z) - Non-Linear Spectral Dimensionality Reduction Under Uncertainty [107.01839211235583]
We propose a new dimensionality reduction framework, called NGEU, which leverages uncertainty information and directly extends several traditional approaches.
We show that the proposed NGEU formulation exhibits a global closed-form solution, and we analyze, based on the Rademacher complexity, how the underlying uncertainties theoretically affect the generalization ability of the framework.
arXiv Detail & Related papers (2022-02-09T19:01:33Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
We study the causal data fusion problem, where datasets pertaining to multiple causal graphs are combined to estimate the average treatment effect of a target variable.
We introduce a framework which combines ideas from probabilistic integration and kernel mean embeddings to represent interventional distributions in the reproducing kernel Hilbert space.
arXiv Detail & Related papers (2021-06-07T10:14:18Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Towards a Kernel based Uncertainty Decomposition Framework for Data and
Models [20.348825818435767]
This paper introduces a new framework for quantifying predictive uncertainty for both data and models.
We apply this framework as a surrogate tool for predictive uncertainty quantification of point-prediction neural network models.
arXiv Detail & Related papers (2020-01-30T18:35:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.