On Limitation of Transformer for Learning HMMs
- URL: http://arxiv.org/abs/2406.04089v1
- Date: Thu, 6 Jun 2024 13:59:51 GMT
- Title: On Limitation of Transformer for Learning HMMs
- Authors: Jiachen Hu, Qinghua Liu, Chi Jin,
- Abstract summary: This paper investigates the performance of Transformers in learning Hidden Markov Models (HMMs)
We show that Transformers consistently underperform Recurrent Neural Networks (RNNs) in both training speed and testing accuracy across all tested HMM models.
Our experiments further reveal the relation between the depth of Transformers and the longest sequence length it can effectively learn, based on the types and the complexity of HMMs.
- Score: 31.128172929754058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the remarkable success of Transformer-based architectures in various sequential modeling tasks, such as natural language processing, computer vision, and robotics, their ability to learn basic sequential models, like Hidden Markov Models (HMMs), is still unclear. This paper investigates the performance of Transformers in learning HMMs and their variants through extensive experimentation and compares them to Recurrent Neural Networks (RNNs). We show that Transformers consistently underperform RNNs in both training speed and testing accuracy across all tested HMM models. There are even challenging HMM instances where Transformers struggle to learn, while RNNs can successfully do so. Our experiments further reveal the relation between the depth of Transformers and the longest sequence length it can effectively learn, based on the types and the complexity of HMMs. To address the limitation of transformers in modeling HMMs, we demonstrate that a variant of the Chain-of-Thought (CoT), called $\textit{block CoT}$ in the training phase, can help transformers to reduce the evaluation error and to learn longer sequences at a cost of increasing the training time. Finally, we complement our empirical findings by theoretical results proving the expressiveness of transformers in approximating HMMs with logarithmic depth.
Related papers
- MoEUT: Mixture-of-Experts Universal Transformers [75.96744719516813]
Universal Transformers (UTs) have advantages over standard Transformers in learning compositional generalizations.
Layer-sharing drastically reduces the parameter count compared to the non-shared model with the same dimensionality.
No previous work has succeeded in proposing a shared-layer Transformer design that is competitive in parameter count-dominated tasks such as language modeling.
arXiv Detail & Related papers (2024-05-25T03:24:32Z) - TransformerFAM: Feedback attention is working memory [18.005034679674274]
We propose a novel Transformer architecture that leverages a feedback loop to enable the network to attend to its own latent representations.
TransformerFAM requires no additional weights, enabling seamless integration with pre-trained models.
arXiv Detail & Related papers (2024-04-14T07:43:45Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
We show that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
This is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
arXiv Detail & Related papers (2023-05-26T00:43:02Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
We propose a novel model architecture that combines the efficient parallelizable training of transformers with the efficient inference of RNNs.
We scale our models as large as 14 billion parameters, by far the largest dense RNN ever trained, and find RWKV performs on par with similarly sized Transformers.
arXiv Detail & Related papers (2023-05-22T13:57:41Z) - Mnemosyne: Learning to Train Transformers with Transformers [18.36543176998175]
We show that Mnemosyne can successfully train Transformers while using simple meta-training strategies that require minimal computational resources.
Mnemosyne provides space comparable complexity to that its hand-designed first-order counterparts, which allows it to scale to training larger sets of parameters.
arXiv Detail & Related papers (2023-02-02T14:40:28Z) - Learning Bounded Context-Free-Grammar via LSTM and the
Transformer:Difference and Explanations [51.77000472945441]
Long Short-Term Memory (LSTM) and Transformers are two popular neural architectures used for natural language processing tasks.
In practice, it is often observed that Transformer models have better representation power than LSTM.
We study such practical differences between LSTM and Transformer and propose an explanation based on their latent space decomposition patterns.
arXiv Detail & Related papers (2021-12-16T19:56:44Z) - Language Modeling using LMUs: 10x Better Data Efficiency or Improved
Scaling Compared to Transformers [4.899818550820576]
We construct a Legendre Memory Unit based model that introduces a general prior for sequence processing.
We show that our new architecture attains the same accuracy as transformers with 10x fewer tokens.
arXiv Detail & Related papers (2021-10-05T23:20:37Z) - Scalable Transformers for Neural Machine Translation [86.4530299266897]
Transformer has been widely adopted in Neural Machine Translation (NMT) because of its large capacity and parallel training of sequence generation.
We propose a novel scalable Transformers, which naturally contains sub-Transformers of different scales and have shared parameters.
A three-stage training scheme is proposed to tackle the difficulty of training the scalable Transformers.
arXiv Detail & Related papers (2021-06-04T04:04:10Z) - Toward Transformer-Based Object Detection [12.704056181392415]
Vision Transformers can be used as a backbone by a common detection task head to produce competitive COCO results.
ViT-FRCNN demonstrates several known properties associated with transformers, including large pretraining capacity and fast fine-tuning performance.
We view ViT-FRCNN as an important stepping stone toward a pure-transformer solution of complex vision tasks such as object detection.
arXiv Detail & Related papers (2020-12-17T22:33:14Z) - Applying the Transformer to Character-level Transduction [68.91664610425114]
The transformer has been shown to outperform recurrent neural network-based sequence-to-sequence models in various word-level NLP tasks.
We show that with a large enough batch size, the transformer does indeed outperform recurrent models for character-level tasks.
arXiv Detail & Related papers (2020-05-20T17:25:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.