Enhancing Weather Predictions: Super-Resolution via Deep Diffusion Models
- URL: http://arxiv.org/abs/2406.04099v2
- Date: Fri, 30 Aug 2024 08:05:08 GMT
- Title: Enhancing Weather Predictions: Super-Resolution via Deep Diffusion Models
- Authors: Jan Martinů, Petr Šimánek,
- Abstract summary: This study investigates the application of deep-learning diffusion models for the super-resolution of weather data.
We present a methodology for transforming low-resolution weather data into high-resolution outputs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study investigates the application of deep-learning diffusion models for the super-resolution of weather data, a novel approach aimed at enhancing the spatial resolution and detail of meteorological variables. Leveraging the capabilities of diffusion models, specifically the SR3 and ResDiff architectures, we present a methodology for transforming low-resolution weather data into high-resolution outputs. Our experiments, conducted using the WeatherBench dataset, focus on the super-resolution of the two-meter temperature variable, demonstrating the models' ability to generate detailed and accurate weather maps. The results indicate that the ResDiff model, further improved by incorporating physics-based modifications, significantly outperforms traditional SR3 methods in terms of Mean Squared Error (MSE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). This research highlights the potential of diffusion models in meteorological applications, offering insights into their effectiveness, challenges, and prospects for future advancements in weather prediction and climate analysis.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
This paper presents a deep generative model for downscaling climate data, specifically precipitation on a regional scale.
We employ a denoising diffusion probabilistic model conditioned on multiple LR climate variables.
Our results demonstrate significant improvements over existing baselines, underscoring the effectiveness of the conditional diffusion model in downscaling climate data.
arXiv Detail & Related papers (2023-12-12T09:39:52Z) - Precipitation Downscaling with Spatiotemporal Video Diffusion [19.004369237435437]
This work extends recent video diffusion models to precipitation super-resolution.
We use a deterministic downscaler followed by a temporally-conditioned diffusion model to capture noise characteristics and high-frequency patterns.
Our analysis, capturing CRPS, MSE, precipitation distributions, and qualitative aspects using California and the Himalayas, establishes our method as a new standard for data-driven precipitation downscaling.
arXiv Detail & Related papers (2023-12-11T02:38:07Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Diffusion Models for High-Resolution Solar Forecasts [0.0]
Score-based diffusion models offer a new approach to modeling probability distributions over many dependent variables.
We apply the technique to day-ahead solar irradiance forecasts by generating many samples from a diffusion model trained to super-resolve numerical weather predictions.
arXiv Detail & Related papers (2023-02-01T01:32:25Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.