UrbanSARFloods: Sentinel-1 SLC-Based Benchmark Dataset for Urban and Open-Area Flood Mapping
- URL: http://arxiv.org/abs/2406.04111v1
- Date: Thu, 6 Jun 2024 14:28:43 GMT
- Title: UrbanSARFloods: Sentinel-1 SLC-Based Benchmark Dataset for Urban and Open-Area Flood Mapping
- Authors: Jie Zhao, Zhitong Xiong, Xiao Xiang Zhu,
- Abstract summary: UrbanSARFloods is a dataset featuring pre-processed Sentinel-1 intensity data and interferometric coherence imagery acquired before and during flood events.
It contains 8,879 $512times 512$ chips covering 807,500 $km2$ across 20 land cover classes and 5, spanning 18 flood events.
We used UrbanSARFloods to benchmark existing state-of-the-art convolutional neural networks (CNNs) for segmenting open and urban flood areas.
- Score: 24.857739769719778
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Due to its cloud-penetrating capability and independence from solar illumination, satellite Synthetic Aperture Radar (SAR) is the preferred data source for large-scale flood mapping, providing global coverage and including various land cover classes. However, most studies on large-scale SAR-derived flood mapping using deep learning algorithms have primarily focused on flooded open areas, utilizing available open-access datasets (e.g., Sen1Floods11) and with limited attention to urban floods. To address this gap, we introduce \textbf{UrbanSARFloods}, a floodwater dataset featuring pre-processed Sentinel-1 intensity data and interferometric coherence imagery acquired before and during flood events. It contains 8,879 $512\times 512$ chips covering 807,500 $km^2$ across 20 land cover classes and 5 continents, spanning 18 flood events. We used UrbanSARFloods to benchmark existing state-of-the-art convolutional neural networks (CNNs) for segmenting open and urban flood areas. Our findings indicate that prevalent approaches, including the Weighted Cross-Entropy (WCE) loss and the application of transfer learning with pretrained models, fall short in overcoming the obstacles posed by imbalanced data and the constraints of a small training dataset. Urban flood detection remains challenging. Future research should explore strategies for addressing imbalanced data challenges and investigate transfer learning's potential for SAR-based large-scale flood mapping. Besides, expanding this dataset to include additional flood events holds promise for enhancing its utility and contributing to advancements in flood mapping techniques.
Related papers
- Urban Flood Mapping Using Satellite Synthetic Aperture Radar Data: A Review of Characteristics, Approaches and Datasets [17.621744717937993]
This study focuses on the challenges and advancements in SAR-based urban flood mapping.
It specifically addresses the limitations of spatial and temporal resolution in SAR data and discusses the essential pre-processing steps.
It highlights a lack of open-access SAR datasets for urban flood mapping, hindering development in advanced deep learning-based methods.
arXiv Detail & Related papers (2024-11-06T09:30:13Z) - Off to new Shores: A Dataset & Benchmark for (near-)coastal Flood Inundation Forecasting [7.4807361562214405]
Floods are among the most common and devastating natural hazards.
Recent progress in weather prediction and spaceborne flood mapping demonstrated the feasibility of anticipating extreme events.
There is a critical lack of datasets and benchmarks to enable the direct forecasting of flood extent.
arXiv Detail & Related papers (2024-09-27T09:51:25Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - Leveraging Citizen Science for Flood Extent Detection using Machine
Learning Benchmark Dataset [0.9029386959445269]
We create a labeled known water body extent and flooded area extents during known flooding events covering about 36,000 sq. kilometers of regions within mainland U.S and Bangladesh.
We also leveraged citizen science by open-sourcing the dataset and hosting an open competition based on the dataset to rapidly prototype flood extent detection using community generated models.
We believe the dataset adds to already existing datasets based on Sentinel-1C SAR data and leads to more robust modeling of flood extents.
arXiv Detail & Related papers (2023-11-15T18:49:29Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning.
However, the promising results achieved on current public datasets may not be applicable to practical scenarios.
We introduce the LargeST benchmark dataset, which includes a total of 8,600 sensors in California with a 5-year time coverage.
arXiv Detail & Related papers (2023-06-14T05:48:36Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Towards Daily High-resolution Inundation Observations using Deep
Learning and EO [0.0]
Constantly remote sensing presents a cost-effective solution for synoptic flood monitoring.
Satellites do offer timely inundation information when they cover an ongoing flood event, but they are limited by their resolution in terms of their ability to monitor flood evolution at various scales.
Data from satellites, such as the Copernicus Sentinels, which have high spatial and low temporal resolution, with data from NASA SMAP and GPM missions could yield high-resolution flood inundation at a daily scale.
arXiv Detail & Related papers (2022-08-10T14:04:50Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
We introduce SensatUrban, an urban-scale UAV photogrammetry point cloud dataset consisting of nearly three billion points collected from three UK cities, covering 7.6 km2.
Each point in the dataset has been labelled with fine-grained semantic annotations, resulting in a dataset that is three times the size of the previous existing largest photogrammetric point cloud dataset.
arXiv Detail & Related papers (2022-01-12T14:48:11Z) - Flood Segmentation on Sentinel-1 SAR Imagery with Semi-Supervised
Learning [1.269104766024433]
We train an ensemble model of multiple UNet architectures with available high and low confidence labeled data.
This assimilated dataset is used for the next round of training ensemble models.
Our approach sets a high score on the public leaderboard for the ETCI competition with 0.7654 IoU.
arXiv Detail & Related papers (2021-07-18T05:42:10Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
We present an urban-scale photogrammetric point cloud dataset with nearly three billion richly annotated points.
Our dataset consists of large areas from three UK cities, covering about 7.6 km2 of the city landscape.
We evaluate the performance of state-of-the-art algorithms on our dataset and provide a comprehensive analysis of the results.
arXiv Detail & Related papers (2020-09-07T14:47:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.