論文の概要: ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models
- arxiv url: http://arxiv.org/abs/2406.04214v1
- Date: Thu, 6 Jun 2024 16:14:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 14:10:28.841939
- Title: ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models
- Title(参考訳): ValueBench: 価値指向の総合的な評価と大規模言語モデルの理解を目指して
- Authors: Yuanyi Ren, Haoran Ye, Hanjun Fang, Xin Zhang, Guojie Song,
- Abstract要約: 大規模言語モデル(LLM)は多様な分野を変革し、人間のプロキシとして影響力を増している。
この研究は、LLMにおける価値オリエンテーションと価値理解を評価するための最初の総合的な心理測定ベンチマークであるValueBenchを紹介した。
- 参考スコア(独自算出の注目度): 14.268555410234804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are transforming diverse fields and gaining increasing influence as human proxies. This development underscores the urgent need for evaluating value orientations and understanding of LLMs to ensure their responsible integration into public-facing applications. This work introduces ValueBench, the first comprehensive psychometric benchmark for evaluating value orientations and value understanding in LLMs. ValueBench collects data from 44 established psychometric inventories, encompassing 453 multifaceted value dimensions. We propose an evaluation pipeline grounded in realistic human-AI interactions to probe value orientations, along with novel tasks for evaluating value understanding in an open-ended value space. With extensive experiments conducted on six representative LLMs, we unveil their shared and distinctive value orientations and exhibit their ability to approximate expert conclusions in value-related extraction and generation tasks. ValueBench is openly accessible at https://github.com/Value4AI/ValueBench.
- Abstract(参考訳): 大規模言語モデル(LLM)は多様な分野を変革し、人間のプロキシとして影響力を増している。
この開発は、公共向けアプリケーションへの責任ある統合を保証するために、価値オリエンテーションの評価とLLMの理解を緊急に必要とすることを明確にしている。
この研究は、LLMにおける価値オリエンテーションと価値理解を評価するための最初の総合的な心理測定ベンチマークであるValueBenchを紹介した。
ValueBenchは、453の多面的価値次元を含む44の確立された心理測定在庫からデータを収集する。
本研究では,現実的な人間とAIの相互作用を基礎とした評価パイプラインの提案と,オープンな価値空間における価値理解を評価するための新しいタスクを提案する。
6つの代表的なLCMに対して行われた広範囲な実験により,それらの共有的および特異な値配向を明らかにし,価値関連抽出および生成タスクにおける専門家の結論を近似する能力を示す。
ValueBenchはhttps://github.com/Value4AI/ValueBench.comで公開されている。
関連論文リスト
- MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
我々は、LVLM(Large Vision-Language Models)において、インターリーブされたマルチモーダル理解と生成を評価するための大規模ベンチマークであるMMIEを紹介する。
MMIEは、数学、コーディング、物理学、文学、健康、芸術を含む3つのカテゴリ、12のフィールド、102のサブフィールドにまたがる20Kの厳密にキュレートされたマルチモーダルクエリで構成されている。
インターリーブされたインプットとアウトプットの両方をサポートし、多様な能力を評価するために、複数選択とオープンな質問フォーマットの混合を提供する。
論文 参考訳(メタデータ) (2024-10-14T04:15:00Z) - LocalValueBench: A Collaboratively Built and Extensible Benchmark for Evaluating Localized Value Alignment and Ethical Safety in Large Language Models [0.0]
大規模言語モデル(LLM)の普及は、その局所的価値や倫理的基準との整合性をしっかりと評価する必要がある。
textscLocalValueBenchは、LLMがオーストラリアの値に準拠していることを評価するために設計されたベンチマークである。
論文 参考訳(メタデータ) (2024-07-27T05:55:42Z) - CLAVE: An Adaptive Framework for Evaluating Values of LLM Generated Responses [34.77031649891843]
CLAVEは2つの補完的なLarge Language Model(LLM)を統合する新しいフレームワークである。
このデュアルモデルアプローチは、値タイプ当たり100個の人ラベルサンプルを使用して、任意の値システムでキャリブレーションを可能にする。
ValEvalは13k+(text,value,label)12+を多種多様なドメインで構成し、3つの主要なバリューシステムをカバーする包括的データセットである。
論文 参考訳(メタデータ) (2024-07-15T13:51:37Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Benchは、77のタスクにわたるLMの9つの異なる能力を徹底的に評価するために設計された、原則化された世代ベンチマークである。
BiGGen Benchの重要な特徴は、インスタンス固有の評価基準の使用であり、人間の評価のニュアンスな識別を忠実に反映している。
論文 参考訳(メタデータ) (2024-06-09T12:30:30Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
本研究では,大言語モデルの固有値システムをスクラッチから再構築する新しいフレームワークであるValueLexを提案する。
語彙仮説に基づいて、ValueLexは30以上のLLMから様々な値を引き出すための生成的アプローチを導入している。
我々は,3つのコア値次元,能力,キャラクタ,積分をそれぞれ特定の部分次元で同定し,LLMが非人間的だが構造化された価値体系を持っていることを明らかにした。
論文 参考訳(メタデータ) (2024-04-19T09:44:51Z) - Large Language Models as Automated Aligners for benchmarking
Vision-Language Models [48.4367174400306]
VLM(Vision-Language Models)は新しいレベルの高度化に達し、複雑な認知と推論タスクの実行において顕著な能力を示している。
既存の評価ベンチマークは、厳密で手作りのデータセットを主に頼りにしており、人為的なモデルと人間の知性との整合性を評価する上で、重大な制限に直面している。
本研究では,LLMを有能なキュレーションとして探求し,自動データキュレーションとアセスメントによってVLMと人間の知性と価値のアライメントを測定するAuto-Benchを用いて,その限界に対処する。
論文 参考訳(メタデータ) (2023-11-24T16:12:05Z) - Value FULCRA: Mapping Large Language Models to the Multidimensional
Spectrum of Basic Human Values [47.779186412943076]
本稿では,新しい基本値アライメントパラダイムと,基本値次元にまたがる値空間を提案する。
人文科学における人文科学と社会科学の基本的価値観に触発され、この研究は、新しい基本的価値アライメントパラダイムと、基本的価値次元にまたがる価値空間を提案する。
今後の研究を促進するために、代表的シュワルツの基本値理論を例として応用し、5k(LLM出力、値ベクトル)ペアからなるデータセットであるFULCRAを構築する。
論文 参考訳(メタデータ) (2023-11-15T10:29:28Z) - Heterogeneous Value Alignment Evaluation for Large Language Models [91.96728871418]
大規模言語モデル(LLM)は、その価値を人間のものと整合させることを重要視している。
本研究では,LLMと不均一値の整合性を評価するため,不均一値アライメント評価(HVAE)システムを提案する。
論文 参考訳(メタデータ) (2023-05-26T02:34:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。