ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models
- URL: http://arxiv.org/abs/2406.04214v1
- Date: Thu, 6 Jun 2024 16:14:16 GMT
- Title: ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models
- Authors: Yuanyi Ren, Haoran Ye, Hanjun Fang, Xin Zhang, Guojie Song,
- Abstract summary: Large Language Models (LLMs) are transforming diverse fields and gaining increasing influence as human proxies.
This work introduces ValueBench, the first comprehensive psychometric benchmark for evaluating value orientations and value understanding in LLMs.
- Score: 14.268555410234804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are transforming diverse fields and gaining increasing influence as human proxies. This development underscores the urgent need for evaluating value orientations and understanding of LLMs to ensure their responsible integration into public-facing applications. This work introduces ValueBench, the first comprehensive psychometric benchmark for evaluating value orientations and value understanding in LLMs. ValueBench collects data from 44 established psychometric inventories, encompassing 453 multifaceted value dimensions. We propose an evaluation pipeline grounded in realistic human-AI interactions to probe value orientations, along with novel tasks for evaluating value understanding in an open-ended value space. With extensive experiments conducted on six representative LLMs, we unveil their shared and distinctive value orientations and exhibit their ability to approximate expert conclusions in value-related extraction and generation tasks. ValueBench is openly accessible at https://github.com/Value4AI/ValueBench.
Related papers
- Value Compass Leaderboard: A Platform for Fundamental and Validated Evaluation of LLMs Values [76.70893269183684]
Large Language Models (LLMs) achieve remarkable breakthroughs, aligning their values with humans has become imperative.
Existing evaluations focus narrowly on safety risks such as bias and toxicity.
Existing benchmarks are prone to data contamination.
The pluralistic nature of human values across individuals and cultures is largely ignored in measuring LLMs value alignment.
arXiv Detail & Related papers (2025-01-13T05:53:56Z) - OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain [62.89809156574998]
We introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain.
Our benchmark is characterized by its multi-dimensional evaluation framework.
Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets.
arXiv Detail & Related papers (2024-12-17T15:38:42Z) - CLAVE: An Adaptive Framework for Evaluating Values of LLM Generated Responses [34.77031649891843]
We introduce CLAVE, a novel framework which integrates two complementary Large Language Models (LLMs)
This dual-model approach enables calibration with any value systems using 100 human-labeled samples per value type.
We present ValEval, a comprehensive dataset comprising 13k+ (text,value,label) 12+s across diverse domains, covering three major value systems.
arXiv Detail & Related papers (2024-07-15T13:51:37Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
This work proposes a novel framework, ValueLex, to reconstruct Large Language Models' unique value system from scratch.
Based on Lexical Hypothesis, ValueLex introduces a generative approach to elicit diverse values from 30+ LLMs.
We identify three core value dimensions, Competence, Character, and Integrity, each with specific subdimensions, revealing that LLMs possess a structured, albeit non-human, value system.
arXiv Detail & Related papers (2024-04-19T09:44:51Z) - Large Language Models as Automated Aligners for benchmarking
Vision-Language Models [48.4367174400306]
Vision-Language Models (VLMs) have reached a new level of sophistication, showing notable competence in executing intricate cognition and reasoning tasks.
Existing evaluation benchmarks, primarily relying on rigid, hand-crafted datasets, face significant limitations in assessing the alignment of these increasingly anthropomorphic models with human intelligence.
In this work, we address the limitations via Auto-Bench, which delves into exploring LLMs as proficient curation, measuring the alignment betweenVLMs and human intelligence and value through automatic data curation and assessment.
arXiv Detail & Related papers (2023-11-24T16:12:05Z) - Value FULCRA: Mapping Large Language Models to the Multidimensional
Spectrum of Basic Human Values [47.779186412943076]
We propose a novel basic value alignment paradigm and a value space spanned by basic value dimensions.
Inspired by basic values in humanity and social science across cultures, this work proposes a novel basic value alignment paradigm and a value space spanned by basic value dimensions.
To foster future research, we apply the representative Schwartz's Theory of Basic Values as an example and construct FULCRA, a dataset consisting of 5k (LLM output, value vector) pairs.
arXiv Detail & Related papers (2023-11-15T10:29:28Z) - Heterogeneous Value Alignment Evaluation for Large Language Models [91.96728871418]
Large Language Models (LLMs) have made it crucial to align their values with those of humans.
We propose a Heterogeneous Value Alignment Evaluation (HVAE) system to assess the success of aligning LLMs with heterogeneous values.
arXiv Detail & Related papers (2023-05-26T02:34:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.