LocalValueBench: A Collaboratively Built and Extensible Benchmark for Evaluating Localized Value Alignment and Ethical Safety in Large Language Models
- URL: http://arxiv.org/abs/2408.01460v1
- Date: Sat, 27 Jul 2024 05:55:42 GMT
- Title: LocalValueBench: A Collaboratively Built and Extensible Benchmark for Evaluating Localized Value Alignment and Ethical Safety in Large Language Models
- Authors: Gwenyth Isobel Meadows, Nicholas Wai Long Lau, Eva Adelina Susanto, Chi Lok Yu, Aditya Paul,
- Abstract summary: The proliferation of large language models (LLMs) requires robust evaluation of their alignment with local values and ethical standards.
textscLocalValueBench is a benchmark designed to assess LLMs' adherence to Australian values.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The proliferation of large language models (LLMs) requires robust evaluation of their alignment with local values and ethical standards, especially as existing benchmarks often reflect the cultural, legal, and ideological values of their creators. \textsc{LocalValueBench}, introduced in this paper, is an extensible benchmark designed to assess LLMs' adherence to Australian values, and provides a framework for regulators worldwide to develop their own LLM benchmarks for local value alignment. Employing a novel typology for ethical reasoning and an interrogation approach, we curated comprehensive questions and utilized prompt engineering strategies to probe LLMs' value alignment. Our evaluation criteria quantified deviations from local values, ensuring a rigorous assessment process. Comparative analysis of three commercial LLMs by USA vendors revealed significant insights into their effectiveness and limitations, demonstrating the critical importance of value alignment. This study offers valuable tools and methodologies for regulators to create tailored benchmarks, highlighting avenues for future research to enhance ethical AI development.
Related papers
- Unveiling Context-Aware Criteria in Self-Assessing LLMs [28.156979106994537]
We propose a novel Self-Assessing LLM framework that integrates Context-Aware Criteria (SALC) with dynamic knowledge tailored to each evaluation instance.
Empirical evaluations demonstrate that our approach significantly outperforms existing baseline evaluation frameworks.
Our method also exhibits a improvement in LC Win-Rate in AlpacaEval2 leaderboard up to a 12% when employed for preference data generation.
arXiv Detail & Related papers (2024-10-28T21:18:49Z) - Disce aut Deficere: Evaluating LLMs Proficiency on the INVALSI Italian Benchmark [12.729687989535359]
evaluating Large Language Models (LLMs) in languages other than English is crucial for ensuring their linguistic versatility, cultural relevance, and applicability in diverse global contexts.
We tackle this challenge by introducing a structured benchmark using the INVALSI tests, a set of well-established assessments designed to measure educational competencies across Italy.
arXiv Detail & Related papers (2024-06-25T13:20:08Z) - TALEC: Teach Your LLM to Evaluate in Specific Domain with In-house Criteria by Criteria Division and Zero-shot Plus Few-shot [2.186726107112913]
We propose a model-based evaluation method: TALEC.
It allows users to flexibly set their own evaluation criteria, and uses in-context learning (ICL) to teach judge model these in-house criteria.
TALEC demonstrates a strong capability to accurately reflect human preferences and achieves a correlation of over 80% with human judgments.
arXiv Detail & Related papers (2024-06-25T10:02:42Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Bench is a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks.
A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation.
arXiv Detail & Related papers (2024-06-09T12:30:30Z) - HD-Eval: Aligning Large Language Model Evaluators Through Hierarchical
Criteria Decomposition [92.17397504834825]
HD-Eval is a framework that iteratively aligns large language models evaluators with human preference.
HD-Eval inherits the essence from the evaluation mindset of human experts and enhances the alignment of LLM-based evaluators.
Extensive experiments on three evaluation domains demonstrate the superiority of HD-Eval in further aligning state-of-the-art evaluators.
arXiv Detail & Related papers (2024-02-24T08:01:32Z) - Inadequacies of Large Language Model Benchmarks in the Era of Generative Artificial Intelligence [5.147767778946168]
We critically assess 23 state-of-the-art Large Language Models (LLMs) benchmarks.
Our research uncovered significant limitations, including biases, difficulties in measuring genuine reasoning, adaptability, implementation inconsistencies, prompt engineering complexity, diversity, and the overlooking of cultural and ideological norms.
arXiv Detail & Related papers (2024-02-15T11:08:10Z) - Leveraging Large Language Models for NLG Evaluation: Advances and Challenges [57.88520765782177]
Large Language Models (LLMs) have opened new avenues for assessing generated content quality, e.g., coherence, creativity, and context relevance.
We propose a coherent taxonomy for organizing existing LLM-based evaluation metrics, offering a structured framework to understand and compare these methods.
By discussing unresolved challenges, including bias, robustness, domain-specificity, and unified evaluation, this paper seeks to offer insights to researchers and advocate for fairer and more advanced NLG evaluation techniques.
arXiv Detail & Related papers (2024-01-13T15:59:09Z) - Calibrating LLM-Based Evaluator [92.17397504834825]
We propose AutoCalibrate, a multi-stage, gradient-free approach to calibrate and align an LLM-based evaluator toward human preference.
Instead of explicitly modeling human preferences, we first implicitly encompass them within a set of human labels.
Our experiments on multiple text quality evaluation datasets illustrate a significant improvement in correlation with expert evaluation through calibration.
arXiv Detail & Related papers (2023-09-23T08:46:11Z) - CValues: Measuring the Values of Chinese Large Language Models from
Safety to Responsibility [62.74405775089802]
We present CValues, the first Chinese human values evaluation benchmark to measure the alignment ability of LLMs.
As a result, we have manually collected adversarial safety prompts across 10 scenarios and induced responsibility prompts from 8 domains.
Our findings suggest that while most Chinese LLMs perform well in terms of safety, there is considerable room for improvement in terms of responsibility.
arXiv Detail & Related papers (2023-07-19T01:22:40Z) - Heterogeneous Value Alignment Evaluation for Large Language Models [91.96728871418]
Large Language Models (LLMs) have made it crucial to align their values with those of humans.
We propose a Heterogeneous Value Alignment Evaluation (HVAE) system to assess the success of aligning LLMs with heterogeneous values.
arXiv Detail & Related papers (2023-05-26T02:34:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.