The CLRS-Text Algorithmic Reasoning Language Benchmark
- URL: http://arxiv.org/abs/2406.04229v1
- Date: Thu, 6 Jun 2024 16:29:25 GMT
- Title: The CLRS-Text Algorithmic Reasoning Language Benchmark
- Authors: Larisa Markeeva, Sean McLeish, Borja Ibarz, Wilfried Bounsi, Olga Kozlova, Alex Vitvitskyi, Charles Blundell, Tom Goldstein, Avi Schwarzschild, Petar Veličković,
- Abstract summary: CLRS-Text is a textual version of the CLRS benchmark.
CLRS-Text is capable of procedurally generating trace data for thirty diverse, challenging algorithmic tasks.
We fine-tune and evaluate various LMs as generalist executors on this benchmark.
- Score: 48.45201665463275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Eliciting reasoning capabilities from language models (LMs) is a critical direction on the path towards building intelligent systems. Most recent studies dedicated to reasoning focus on out-of-distribution performance on procedurally-generated synthetic benchmarks, bespoke-built to evaluate specific skills only. This trend makes results hard to transfer across publications, slowing down progress. Three years ago, a similar issue was identified and rectified in the field of neural algorithmic reasoning, with the advent of the CLRS benchmark. CLRS is a dataset generator comprising graph execution traces of classical algorithms from the Introduction to Algorithms textbook. Inspired by this, we propose CLRS-Text -- a textual version of these algorithmic traces. Out of the box, CLRS-Text is capable of procedurally generating trace data for thirty diverse, challenging algorithmic tasks across any desirable input distribution, while offering a standard pipeline in which any additional algorithmic tasks may be created in the benchmark. We fine-tune and evaluate various LMs as generalist executors on this benchmark, validating prior work and revealing a novel, interesting challenge for the LM reasoning community. Our code is available at https://github.com/google-deepmind/clrs/tree/master/clrs/_src/clrs_text.
Related papers
- From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models [63.188607839223046]
This survey focuses on the benefits of scaling compute during inference.
We explore three areas under a unified mathematical formalism: token-level generation algorithms, meta-generation algorithms, and efficient generation.
arXiv Detail & Related papers (2024-06-24T17:45:59Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
Uncertainty quantification (UQ) is a critical component of machine learning (ML) applications.
We introduce a novel benchmark that implements a collection of state-of-the-art UQ baselines.
We conduct a large-scale empirical investigation of UQ and normalization techniques across nine tasks, and identify the most promising approaches.
arXiv Detail & Related papers (2024-06-21T20:06:31Z) - SALSA-CLRS: A Sparse and Scalable Benchmark for Algorithmic Reasoning [20.706469085872516]
We introduce an extension to the CLRS algorithmic learning benchmark, prioritizing scalability and the utilization of sparse representations.
Our approach includes adapted algorithms from the original CLRS benchmark and introduces new problems from distributed and randomized algorithms.
arXiv Detail & Related papers (2023-09-21T16:57:09Z) - Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models [17.059322033670124]
We propose a novel strategy that propels Large Language Models through algorithmic reasoning pathways.
Our results suggest that instructing an LLM using an algorithm can lead to performance surpassing that of the algorithm itself.
arXiv Detail & Related papers (2023-08-20T22:36:23Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
"Similarity score" is a numerical estimate of the expertise of a reviewer in reviewing a paper.
Our dataset consists of 477 self-reported expertise scores provided by 58 researchers.
For the task of ordering two papers in terms of their relevance for a reviewer, the error rates range from 12%-30% in easy cases to 36%-43% in hard cases.
arXiv Detail & Related papers (2023-03-23T16:15:03Z) - Momentum Decoding: Open-ended Text Generation As Graph Exploration [49.812280360794894]
Open-ended text generation with autoregressive language models (LMs) is one of the core tasks in natural language processing.
We formulate open-ended text generation from a new perspective, i.e., we view it as an exploration process within a directed graph.
We propose a novel decoding method -- textitmomentum decoding -- which encourages the LM to explore new nodes outside the current graph.
arXiv Detail & Related papers (2022-12-05T11:16:47Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
We study the OOD generalization of neural algorithmic reasoning tasks.
The goal is to learn an algorithm from input-output pairs using deep neural networks.
arXiv Detail & Related papers (2022-11-01T18:33:20Z) - The CLRS Algorithmic Reasoning Benchmark [28.789225199559834]
Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.
We propose the CLRS Algorithmic Reasoning Benchmark, covering classical algorithms from the Introduction to Algorithms textbook.
Our benchmark spans a variety of algorithmic reasoning procedures, including sorting, searching, dynamic programming, graph algorithms, string algorithms and geometric algorithms.
arXiv Detail & Related papers (2022-05-31T09:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.