Entangling Quantum Memories at Channel Capacity
- URL: http://arxiv.org/abs/2406.04272v2
- Date: Fri, 18 Oct 2024 12:41:25 GMT
- Title: Entangling Quantum Memories at Channel Capacity
- Authors: Prajit Dhara, Liang Jiang, Saikat Guha,
- Abstract summary: Entangling quantum memories, mediated by optical-frequency or microwave channels, is key for linking qubits across short and long ranges.
We show that a cavity-assisted memory-photon interface can be used to entangle matter memories with Gottesman-Kitaev-Preskill (GKP) photonic qudits.
- Score: 3.152708951218456
- License:
- Abstract: Entangling quantum memories, mediated by optical-frequency or microwave channels, at high rates and fidelities is key for linking qubits across short and long ranges. All well-known protocols encode up to one qubit per optical mode, hence entangling one pair of memory qubits per transmitted mode over the channel, with probability $\eta$, the channel's transmissivity. The rate is proportional to $\eta$ ideal Bell states (ebits) per mode. The quantum capacity, $C(\eta) = -\log_2(1-{\eta})$ ebits per mode, which $\approx 1.44\eta$ for high loss, i.e., $\eta \ll 1$, thereby making these schemes near rate-optimal. However, $C(\eta) \to \infty$ as $\eta \to 1$, making the known schemes highly rate-suboptimal for shorter ranges. We show that a cavity-assisted memory-photon interface can be used to entangle matter memories with Gottesman-Kitaev-Preskill (GKP) photonic qudits, which along with dual-homodyne entanglement swaps that retain analog information, enables entangling memories at capacity-approaching rates at low loss. We benefit from loss resilience of GKP qudits, and their ability to encode multiple qubits in one mode. Our memory-photon interface further supports the preparation of needed ancilla GKP qudits. We expect our result to spur research in low-loss high-cooperativity cavity-coupled qubits with high-efficiency optical coupling, and demonstrations of high-rate short-range quantum links.
Related papers
- Multiplexed quantum repeaters with hot multimode alkali-noble gas memories [45.49722819849123]
We propose a non-cryogenic optical quantum memory for noble-gas nuclear spins based on the Atomic Frequency Comb protocol.
We discuss how these quantum memories can enhance rates in satellite quantum communication networks.
arXiv Detail & Related papers (2024-02-27T18:39:15Z) - Covert Quantum Communication Over Optical Channels [2.094817774591302]
We show a emphsquare root law (SRL) for quantum covert communication similar to that for classical.
Our proof uses photonic dual-rail qubit encoding, which has been proposed for long-range repeater-based quantum communication.
Our converse employs prior covert signal power limit results and adapts well-known methods to upper bound quantum capacity of optical channels.
arXiv Detail & Related papers (2024-01-12T18:54:56Z) - Optical Memory in a Microfabricated Rubidium Vapor Cell [0.0]
We demonstrate a high-bandwidth optical memory using a warm alkali atom ensemble in a microfabricated vapor cell.
We explore a novel ground-state quantum memory scheme in the hyperfine Paschen-Back regime.
For a storage time of 80 ns we measure an end-to-end efficiency of $eta_e2etext80ns = 3.12(17)%$, corresponding to an internal efficiency of $eta_textinttext0ns = 24(3)%$.
arXiv Detail & Related papers (2023-07-17T14:58:13Z) - A Single-Photon-compatible Telecom-C-Band Quantum Memory in a Hot Atomic
Gas [0.0]
Storage and on-demand retrieval of quantum optical states compatible with the telecommunications C-band is a requirement for future terrestrial-based quantum optical networking.
We report on a telecommunication wavelength and bandwidth compatible quantum memory.
We demonstrate a total memory efficiency of $20.90(1),%$ with a Doppler-limited storage time of $1.10(2),$ns.
arXiv Detail & Related papers (2022-11-08T18:00:01Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Zero-Added-Loss Entangled Photon Multiplexing for Ground- and
Space-Based Quantum Networks [2.4075366828302482]
We propose a scheme for optical entanglement distribution in quantum networks based on a quasi-deterministic entangled photon pair source.
Our architecture presents a blueprint for realizing global-scale quantum networks in the near-term.
arXiv Detail & Related papers (2022-06-08T04:38:39Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Optimization and readout-noise analysis of a warm vapor EIT memory on
the Cs D1 line [0.0]
Quantum memories promise to enable global quantum repeater networks.
For field applications, alkali metal vapors constitute an exceptional storage platform.
We demonstrate a technologically simple, in principle satellite-suited quantum memory based on electromagnetically induced transparency on the cesium D1 line.
arXiv Detail & Related papers (2022-03-11T18:23:44Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.