Quixer: A Quantum Transformer Model
- URL: http://arxiv.org/abs/2406.04305v1
- Date: Thu, 6 Jun 2024 17:52:05 GMT
- Title: Quixer: A Quantum Transformer Model
- Authors: Nikhil Khatri, Gabriel Matos, Luuk Coopmans, Stephen Clark,
- Abstract summary: We present Quixer: a novel quantum transformer model.
Quixer operates by preparing a superposition of tokens and applying a trainable non-linear transformation to this mix.
We show that its parameterised components can be substituted with fixed structures to yield new classes of quantum transformers.
- Score: 3.140679149492808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Progress in the realisation of reliable large-scale quantum computers has motivated research into the design of quantum machine learning models. We present Quixer: a novel quantum transformer model which utilises the Linear Combination of Unitaries and Quantum Singular Value Transform primitives as building blocks. Quixer operates by preparing a superposition of tokens and applying a trainable non-linear transformation to this mix. We present the first results for a quantum transformer model applied to a practical language modelling task, obtaining results competitive with an equivalent classical baseline. In addition, we include resource estimates for evaluating the model on quantum hardware, and provide an open-source implementation for classical simulation. We conclude by highlighting the generality of Quixer, showing that its parameterised components can be substituted with fixed structures to yield new classes of quantum transformers.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum circuit synthesis with diffusion models [0.6554326244334868]
We use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation.
We steer the model to produce desired quantum operations within gate-based quantum circuits.
We envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.
arXiv Detail & Related papers (2023-11-03T17:17:08Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Quantum Vision Transformers [2.3558144417896583]
We introduce three types of quantum transformers for training and inference, including a quantum transformer based on compound matrices.
We performed extensive simulations of the quantum transformers on standard medical image datasets that showed competitively.
We implemented our quantum transformers on superconducting quantum computers and obtained encouraging results for up to six qubit experiments.
arXiv Detail & Related papers (2022-09-16T20:51:23Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Quantum Machine Learning with SQUID [64.53556573827525]
We present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems.
We provide examples of using SQUID in a standard binary classification problem from the popular MNIST dataset.
arXiv Detail & Related papers (2021-04-30T21:34:11Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - An end-to-end trainable hybrid classical-quantum classifier [0.0]
We introduce a hybrid model combining a quantum-inspired tensor network and a variational quantum circuit to perform supervised learning tasks.
This architecture allows for the classical and quantum parts of the model to be trained simultaneously, providing an end-to-end training framework.
arXiv Detail & Related papers (2021-02-04T05:19:54Z) - Enhancing Generative Models via Quantum Correlations [1.6099403809839032]
Generative modeling using samples drawn from the probability distribution constitutes a powerful approach for unsupervised machine learning.
We show theoretically that such quantum correlations provide a powerful resource for generative modeling.
We numerically test this separation on standard machine learning data sets and show that it holds for practical problems.
arXiv Detail & Related papers (2021-01-20T22:57:22Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.