Gradient-Free Adversarial Purification with Diffusion Models
- URL: http://arxiv.org/abs/2501.13336v1
- Date: Thu, 23 Jan 2025 02:34:14 GMT
- Title: Gradient-Free Adversarial Purification with Diffusion Models
- Authors: Xuelong Dai, Dong Wang, Duan Mingxing, Bin Xiao,
- Abstract summary: Adversarial training and adversarial purification are effective methods to enhance a model's robustness against adversarial attacks.
We propose an effective and efficient adversarial defense method that counters both perturbation-based and unrestricted adversarial attacks.
- Score: 10.917491144598575
- License:
- Abstract: Adversarial training and adversarial purification are two effective and practical defense methods to enhance a model's robustness against adversarial attacks. However, adversarial training necessitates additional training, while adversarial purification suffers from low time efficiency. More critically, current defenses are designed under the perturbation-based adversarial threat model, which is ineffective against the recently proposed unrestricted adversarial attacks. In this paper, we propose an effective and efficient adversarial defense method that counters both perturbation-based and unrestricted adversarial attacks. Our defense is inspired by the observation that adversarial attacks are typically located near the decision boundary and are sensitive to pixel changes. To address this, we introduce adversarial anti-aliasing to mitigate adversarial modifications. Additionally, we propose adversarial super-resolution, which leverages prior knowledge from clean datasets to benignly recover images. These approaches do not require additional training and are computationally efficient without calculating gradients. Extensive experiments against both perturbation-based and unrestricted adversarial attacks demonstrate that our defense method outperforms state-of-the-art adversarial purification methods.
Related papers
- Test-time Adversarial Defense with Opposite Adversarial Path and High Attack Time Cost [5.197034517903854]
We investigate a new test-time adversarial defense method via diffusion-based recovery along opposite adversarial paths (OAPs)
We present a purifier that can be plugged into a pre-trained model to resist adversarial attacks.
arXiv Detail & Related papers (2024-10-22T08:32:17Z) - Fast Preemption: Forward-Backward Cascade Learning for Efficient and Transferable Proactive Adversarial Defense [13.252842556505174]
Deep learning technology has become untrustworthy due to its sensitivity to adversarial attacks.
We have devised a proactive strategy that preempts by safeguarding media upfront.
We have also devised the first, to our knowledge, effective white-box adaptive reversion attack.
arXiv Detail & Related papers (2024-07-22T10:23:44Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - Language Guided Adversarial Purification [3.9931474959554496]
Adversarial purification using generative models demonstrates strong adversarial defense performance.
New framework, Language Guided Adversarial Purification (LGAP), utilizing pre-trained diffusion models and caption generators.
arXiv Detail & Related papers (2023-09-19T06:17:18Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
We develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA)
Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size.
More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
arXiv Detail & Related papers (2022-12-30T18:45:23Z) - Improving Adversarial Robustness with Self-Paced Hard-Class Pair
Reweighting [5.084323778393556]
adversarial training with untargeted attacks is one of the most recognized methods.
We find that the naturally imbalanced inter-class semantic similarity makes those hard-class pairs to become the virtual targets of each other.
We propose to upweight hard-class pair loss in model optimization, which prompts learning discriminative features from hard classes.
arXiv Detail & Related papers (2022-10-26T22:51:36Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - What Doesn't Kill You Makes You Robust(er): Adversarial Training against
Poisons and Backdoors [57.040948169155925]
We extend the adversarial training framework to defend against (training-time) poisoning and backdoor attacks.
Our method desensitizes networks to the effects of poisoning by creating poisons during training and injecting them into training batches.
We show that this defense withstands adaptive attacks, generalizes to diverse threat models, and incurs a better performance trade-off than previous defenses.
arXiv Detail & Related papers (2021-02-26T17:54:36Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
We introduce a relaxation term to the standard loss, that finds more suitable gradient-directions, increases attack efficacy and leads to more efficient adversarial training.
We propose Guided Adversarial Margin Attack (GAMA), which utilizes function mapping of the clean image to guide the generation of adversaries.
We also propose Guided Adversarial Training (GAT), which achieves state-of-the-art performance amongst single-step defenses.
arXiv Detail & Related papers (2020-11-30T16:39:39Z) - Stochastic Security: Adversarial Defense Using Long-Run Dynamics of
Energy-Based Models [82.03536496686763]
The vulnerability of deep networks to adversarial attacks is a central problem for deep learning from the perspective of both cognition and security.
We focus on defending naturally-trained classifiers using Markov Chain Monte Carlo (MCMC) sampling with an Energy-Based Model (EBM) for adversarial purification.
Our contributions are 1) an improved method for training EBM's with realistic long-run MCMC samples, 2) Expectation-Over-Transformation (EOT) defense that resolves theoretical ambiguities for defenses, and 3) state-of-the-art adversarial defense for naturally-trained classifiers and competitive defense.
arXiv Detail & Related papers (2020-05-27T17:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.