SDE: A Simplified and Disentangled Dependency Encoding Framework for State Space Models in Time Series Forecasting
- URL: http://arxiv.org/abs/2408.12068v3
- Date: Tue, 03 Jun 2025 07:51:04 GMT
- Title: SDE: A Simplified and Disentangled Dependency Encoding Framework for State Space Models in Time Series Forecasting
- Authors: Zixuan Weng, Jindong Han, Wenzhao Jiang, Hao Liu,
- Abstract summary: We identify and formally define three critical dependencies that are fundamental to forecasting accuracy.<n>We propose SDE (Simplified and Disentangled Dependency entangle), a novel framework designed to enhance the capability of SSMs for time series forecasting.
- Score: 8.841699904757506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, advancements in deep learning have spurred the development of numerous models for Long-term Time Series Forecasting (LTSF). However, most existing approaches struggle to fully capture the complex and structured dependencies inherent in time series data. In this work, we identify and formally define three critical dependencies that are fundamental to forecasting accuracy: order dependency and semantic dependency along the temporal dimension, as well as cross-variate dependency across the feature dimension. These dependencies are often treated in isolation, and improper handling can introduce noise and degrade forecasting performance. To bridge this gap, we investigate the potential of State Space Models (SSMs) for LTSF and emphasize their inherent advantages in capturing these essential dependencies. Additionally, we empirically observe that excessive nonlinearity in conventional SSMs introduce redundancy when applied to semantically sparse time series data. Motivated by this insight, we propose SDE (Simplified and Disentangled Dependency Encoding), a novel framework designed to enhance the capability of SSMs for LTSF. Specifically, we first eliminate unnecessary nonlinearities in vanilla SSMs, thereby improving the suitability for time series forecasting. Building on this foundation, we introduce a disentangled encoding strategy, which empowers SSMs to efficiently model cross-variate dependencies while mitigating interference between the temporal and feature dimensions. Furthermore, we provide rigorous theoretical justifications to substantiate our design choices. Extensive experiments on nine real-world benchmark datasets demonstrate that SDE-enhanced SSMs consistently outperform state-of-the-art time series forecasting models.Our code is available at https://github.com/YukinoAsuna/SAMBA.
Related papers
- Long-Context State-Space Video World Models [66.28743632951218]
We propose a novel architecture leveraging state-space models (SSMs) to extend temporal memory without compromising computational efficiency.<n>Central to our design is a block-wise SSM scanning scheme, which strategically trades off spatial consistency for extended temporal memory.<n>Experiments on Memory Maze and Minecraft datasets demonstrate that our approach surpasses baselines in preserving long-range memory.
arXiv Detail & Related papers (2025-05-26T16:12:41Z) - Learning to Dissipate Energy in Oscillatory State-Space Models [55.09730499143998]
State-space models (SSMs) are a class of networks for sequence learning.<n>We show that D-LinOSS consistently outperforms previous LinOSS methods on long-range learning tasks.
arXiv Detail & Related papers (2025-05-17T23:15:17Z) - Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
Continual Learning aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge.
State Space Models (SSMs) have achieved notable success in computer vision.
We introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model.
arXiv Detail & Related papers (2024-11-23T06:36:16Z) - Selecting Influential Samples for Long Context Alignment via Homologous Models' Guidance and Contextual Awareness Measurement [62.87020831987625]
We propose a novel framework designed to identify the influential and high-quality samples enriched with long-range dependency relations.
We select the most challenging samples as the influential data to effectively frame the long-range dependencies.
Experiments indicate that GATEAU effectively identifies samples enriched with long-range dependency relations and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities.
arXiv Detail & Related papers (2024-10-21T04:30:53Z) - UmambaTSF: A U-shaped Multi-Scale Long-Term Time Series Forecasting Method Using Mamba [7.594115034632109]
We propose UmambaTSF, a novel long-term time series forecasting framework.
It integrates multi-scale feature extraction capabilities of U-shaped encoder-decoder multilayer perceptrons (MLP) with Mamba's long sequence representation.
UmambaTSF achieves state-of-the-art performance and excellent generality on widely used benchmark datasets.
arXiv Detail & Related papers (2024-10-15T04:56:43Z) - Mamba or Transformer for Time Series Forecasting? Mixture of Universals (MoU) Is All You Need [28.301119776877822]
Time series forecasting requires balancing short-term and long-term dependencies for accurate predictions.
Transformers are superior in modeling long-term dependencies but are criticized for their quadratic computational cost.
Mamba provides a near-linear alternative but is reported less effective in time series longterm forecasting due to potential information loss.
arXiv Detail & Related papers (2024-08-28T17:59:27Z) - Multi-Knowledge Fusion Network for Time Series Representation Learning [2.368662284133926]
We propose a hybrid architecture that combines prior knowledge with implicit knowledge of the relational structure within the MTS data.
The proposed architecture has shown promising results on multiple benchmark datasets and outperforms state-of-the-art forecasting methods by a significant margin.
arXiv Detail & Related papers (2024-08-22T14:18:16Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
Diffusion models rely on the time-step for the multi-round denoising.<n>We introduce a novel quantization framework that includes three strategies.<n>This framework preserves most of the temporal information and ensures high-quality end-to-end generation.
arXiv Detail & Related papers (2024-07-28T17:46:15Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
We introduce DeciMamba, a context-extension method specifically designed for Mamba.
We show that DeciMamba can extrapolate context lengths 25x longer than the ones seen during training, and does so without utilizing additional computational resources.
arXiv Detail & Related papers (2024-06-20T17:40:18Z) - Decision Mamba: A Multi-Grained State Space Model with Self-Evolution Regularization for Offline RL [57.202733701029594]
Decision Mamba is a novel multi-grained state space model with a self-evolving policy learning strategy.
To mitigate the overfitting issue on noisy trajectories, a self-evolving policy is proposed by using progressive regularization.
The policy evolves by using its own past knowledge to refine the suboptimal actions, thus enhancing its robustness on noisy demonstrations.
arXiv Detail & Related papers (2024-06-08T10:12:00Z) - CMamba: Channel Correlation Enhanced State Space Models for Multivariate Time Series Forecasting [18.50360049235537]
Mamba, a state space model, has emerged with robust sequence and feature mixing capabilities.
Capturing cross-channel dependencies is critical in enhancing performance of time series prediction.
We introduce a refined Mamba variant tailored for time series forecasting.
arXiv Detail & Related papers (2024-06-08T01:32:44Z) - Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models [5.37935922811333]
State Space Models (SSMs) are classical approaches for univariate time series modeling.
We present Chimera that uses two input-dependent 2-D SSM heads with different discretization processes to learn long-term progression and seasonal patterns.
Our experimental evaluation shows the superior performance of Chimera on extensive and diverse benchmarks.
arXiv Detail & Related papers (2024-06-06T17:58:09Z) - Time-SSM: Simplifying and Unifying State Space Models for Time Series Forecasting [22.84798547604491]
State Space Models (SSMs) approximate continuous systems using a set of basis functions and discretize them to handle input data.
This paper proposes a novel theoretical framework termed Dynamic Spectral Operator, offering more intuitive and general guidance on applying SSMs to time series data.
We introduce Time-SSM, a novel SSM-based foundation model with only one-seventh of the parameters compared to Mamba.
arXiv Detail & Related papers (2024-05-25T17:42:40Z) - Bi-Mamba+: Bidirectional Mamba for Time Series Forecasting [5.166854384000439]
Long-term time series forecasting (LTSF) provides longer insights into future trends and patterns.
Recently, a new state space model (SSM) named Mamba is proposed.
With the selective capability on input data and the hardware-aware parallel computing algorithm, Mamba has shown great potential in balancing predicting performance and computational efficiency.
arXiv Detail & Related papers (2024-04-24T09:45:48Z) - Is Mamba Effective for Time Series Forecasting? [30.85990093479062]
We propose a Mamba-based model named Simple-Mamba (S-Mamba) for time series forecasting.
Specifically, we tokenize the time points of each variate autonomously via a linear layer.
Experiments on thirteen public datasets prove that S-Mamba maintains low computational overhead and achieves leading performance.
arXiv Detail & Related papers (2024-03-17T08:50:44Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraos incorporates chaos theory into long-term time series forecasting.
We show that Attraos outperforms various LTSF methods on mainstream datasets and chaotic datasets with only one-twelfth of the parameters compared to PatchTST.
arXiv Detail & Related papers (2024-02-18T05:35:01Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Diffusion-based Time Series Imputation and Forecasting with Structured
State Space Models [2.299617836036273]
We put forward SSSD, an imputation model that relies on two emerging technologies,conditional diffusion models and structured state space models.
We demonstrate that SSSD matches or even exceeds state-of-the-art probabilistic imputation and forecasting performance on a broad range of data sets and different missingness scenarios.
arXiv Detail & Related papers (2022-08-19T15:29:43Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
We propose TrendGCN to address the challenge of balancing dynamics and robustness.
Our model simultaneously incorporates spatial (node-wise) embeddings and temporal (time-wise) embeddings to account for heterogeneous space-and-time convolutions.
Compared with traditional approaches that handle step-wise predictive errors independently, our approach can produce more realistic and robust forecasts.
arXiv Detail & Related papers (2022-08-05T09:36:55Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.