Efficiently Building and Characterizing Electromagnetic Models of Multi-Qubit Superconducting Circuits
- URL: http://arxiv.org/abs/2406.04351v1
- Date: Mon, 13 May 2024 00:07:11 GMT
- Title: Efficiently Building and Characterizing Electromagnetic Models of Multi-Qubit Superconducting Circuits
- Authors: Fadi Wassaf,
- Abstract summary: complexity of superconducting quantum computers can introduce parasitic couplings and resonances.
We present a method of modeling and characterization based on multiport impedance functions that correspond to multi-qubit circuits.
We then present characterization methods that allow us to estimate effective qubit coupling rates, state-dependent dispersive shifts of resonant modes, and qubit relaxation times.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In an attempt to better leverage superconducting quantum computers, scaling efforts have become the central concern. These efforts have been further exacerbated by the increased complexity of these circuits. The added complexity can introduce parasitic couplings and resonances, which may hinder the overall performance and scalability of these devices. We explore a method of modeling and characterization based on multiport impedance functions that correspond to multi-qubit circuits. By combining vector fitting techniques with a novel method for interconnecting rational impedance functions, we are able to efficiently construct Hamiltonians for multi-qubit circuits using electromagnetic simulations. Our methods can also be applied to circuits that contain both lumped and distributed element components. The constructed Hamiltonians account for all the interactions within a circuit that are described by the impedance function. We then present characterization methods that allow us to estimate effective qubit coupling rates, state-dependent dispersive shifts of resonant modes, and qubit relaxation times.
Related papers
- In-situ tunable interaction with an invertible sign between a fluxonium and a post cavity [0.0]
nonlinearity is introduced to a cavity mode through an ancillary two-level qubit.
The ancilla's spurious heating has impeded progress towards fully fault-tolerant bosonic qubits.
This work presents a novel architecture for quantum information processing, comprising a 3D post cavity coupled to a fluxonium ancilla via a readout resonator.
arXiv Detail & Related papers (2024-09-11T20:49:36Z) - Toolbox for nonreciprocal dispersive models in circuit QED [41.94295877935867]
We provide a systematic method for constructing effective dispersive Lindblad master equations to describe weakly anharmonic superconducting circuits coupled by a generic dissipationless nonreciprocal linear system.
Results can be used for the design of complex superconducting quantum processors with nontrivial routing of quantum information, as well as quantum simulators of condensed matter systems.
arXiv Detail & Related papers (2023-12-13T18:44:55Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Functional Renormalization Group Approach to Circuit Quantum
Electrodynamics [0.0]
A nonperturbative approach is developed to analyze superconducting circuits coupled to quantized electromagnetic continuum.
Our results indicate that a nonperturbative analysis is essential for a comprehensive understanding of cQED platforms.
arXiv Detail & Related papers (2022-08-30T09:43:39Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Computer-aided quantization and numerical analysis of superconducting
circuits [0.0]
We present work utilizing symbolic computer algebra and numerical diagonalization routines versatile enough to tackle a variety of circuits.
Results from this work are accessible through a newly released module of the scqubits package.
arXiv Detail & Related papers (2022-06-16T17:25:02Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Stoquasticity in circuit QED [78.980148137396]
We show that scalable sign-problem free path integral Monte Carlo simulations can typically be performed for such systems.
We corroborate the recent finding that an effective, non-stoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux qubits.
arXiv Detail & Related papers (2020-11-02T16:41:28Z) - Energy-participation quantization of Josephson circuits [0.0]
We present a method based on the energy-participation ratio (EPR) of a dissipative or nonlinear element in an electromagnetic mode.
The EPR quantifies how much of the energy of a mode is stored in each element.
We experimentally tested this method on a variety of Josephson circuits, and demonstrated agreement within several percents for nonlinear couplings and modal Hamiltonian parameters.
arXiv Detail & Related papers (2020-10-01T18:02:50Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.