BugBlitz-AI: An Intelligent QA Assistant
- URL: http://arxiv.org/abs/2406.04356v1
- Date: Fri, 17 May 2024 11:09:10 GMT
- Title: BugBlitz-AI: An Intelligent QA Assistant
- Authors: Yi Yao, Jun Wang, Yabai Hu, Lifeng Wang, Yi Zhou, Jack Chen, Xuming Gai, Zhenming Wang, Wenjun Liu,
- Abstract summary: BugBlitz-AI is an AI-powered validation toolkit designed to enhance end-to-end test automation.
BugBlitz-AI reduces the time-intensive tasks of manual result analysis and report generation.
- Score: 9.896793022928048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution of software testing from manual to automated methods has significantly influenced quality assurance (QA) practices. However, challenges persist in post-execution phases, particularly in result analysis and reporting. Traditional post-execution validation phases require manual intervention for result analysis and report generation, leading to inefficiencies and potential development cycle delays. This paper introduces BugBlitz-AI, an AI-powered validation toolkit designed to enhance end-to-end test automation by automating result analysis and bug reporting processes. BugBlitz-AI leverages recent advancements in artificial intelligence to reduce the time-intensive tasks of manual result analysis and report generation, allowing QA teams to focus more on crucial aspects of product quality. By adopting BugBlitz-AI, organizations can advance automated testing practices and integrate AI into QA processes, ensuring higher product quality and faster time-to-market. The paper outlines BugBlitz-AI's architecture, discusses related work, details its quality enhancement strategies, and presents results demonstrating its effectiveness in real-world scenarios.
Related papers
- AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
We introduce AutoPT, an automated penetration testing agent based on the principle of PSM driven by LLMs.
Our results show that AutoPT outperforms the baseline framework ReAct on the GPT-4o mini model.
arXiv Detail & Related papers (2024-11-02T13:24:30Z) - The Future of Software Testing: AI-Powered Test Case Generation and Validation [0.0]
This paper explores the transformative potential of AI in improving test case generation and validation.
It focuses on its ability to enhance efficiency, accuracy, and scalability in testing processes.
It also addresses key challenges associated with adapting AI for testing, including the need for high quality training data.
arXiv Detail & Related papers (2024-09-09T17:12:40Z) - The Role of Artificial Intelligence and Machine Learning in Software Testing [0.14896196009851972]
Artificial Intelligence (AI) and Machine Learning (ML) have significantly impacted various industries.
Software testing, a crucial part of the software development lifecycle (SDLC), ensures the quality and reliability of software products.
This paper explores the role of AI and ML in software testing by reviewing existing literature, analyzing current tools and techniques, and presenting case studies.
arXiv Detail & Related papers (2024-09-04T13:25:13Z) - Leveraging Large Language Models for Efficient Failure Analysis in Game Development [47.618236610219554]
This paper proposes a new approach to automatically identify which change in the code caused a test to fail.
The method leverages Large Language Models (LLMs) to associate error messages with the corresponding code changes causing the failure.
Our approach reaches an accuracy of 71% in our newly created dataset, which comprises issues reported by developers at EA over a period of one year.
arXiv Detail & Related papers (2024-06-11T09:21:50Z) - GAIA: Rethinking Action Quality Assessment for AI-Generated Videos [56.047773400426486]
Action quality assessment (AQA) algorithms predominantly focus on actions from real specific scenarios and are pre-trained with normative action features.
We construct GAIA, a Generic AI-generated Action dataset, by conducting a large-scale subjective evaluation from a novel causal reasoning-based perspective.
Results show that traditional AQA methods, action-related metrics in recent T2V benchmarks, and mainstream video quality methods perform poorly with an average SRCC of 0.454, 0.191, and 0.519, respectively.
arXiv Detail & Related papers (2024-06-10T08:18:07Z) - Adaptation of XAI to Auto-tuning for Numerical Libraries [0.0]
Explainable AI (XAI) technology is gaining prominence, aiming to streamline AI model development and alleviate the burden of explaining AI outputs to users.
This research focuses on XAI for AI models when integrated into two different processes for practical numerical computations.
arXiv Detail & Related papers (2024-05-12T09:00:56Z) - Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review [0.0]
We review the eXplainable AI (XAI) tools and techniques in this context.
We focus on their role in making AI decision-making transparent, particularly in critical scenarios where humans are involved.
We discuss current limitations and potential future research that aims to balance explainability with model performance.
arXiv Detail & Related papers (2024-04-17T17:49:38Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
This article introduces Computational Management, a systematic approach to task automation.
The article offers three easy step-by-step procedures to begin the process of implementing AI within a workflow.
arXiv Detail & Related papers (2024-02-07T01:45:14Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoAct is an automatic agent learning framework for QA.
It does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models.
arXiv Detail & Related papers (2024-01-10T16:57:24Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
Testing video games is an increasingly difficult task as traditional methods fail to scale with growing software systems.
We present SUPERNOVA, a system responsible for test selection and defect prevention while also functioning as an automation hub.
The direct impact of this has been observed to be a reduction in 55% or more testing hours for an undisclosed sports game title.
arXiv Detail & Related papers (2022-03-10T00:47:46Z) - On Introducing Automatic Test Case Generation in Practice: A Success
Story and Lessons Learned [7.717446055777458]
This paper reports our experience in introducing techniques for automatically generating system test suites in a medium-size company.
We describe the technical and organisational obstacles that we faced when introducing automatic test case generation.
We present ABT2.0, the test case generator that we developed.
arXiv Detail & Related papers (2021-02-28T11:31:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.