論文の概要: Naming the Pain in Machine Learning-Enabled Systems Engineering
- arxiv url: http://arxiv.org/abs/2406.04359v1
- Date: Mon, 20 May 2024 06:59:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-23 14:05:12.677088
- Title: Naming the Pain in Machine Learning-Enabled Systems Engineering
- Title(参考訳): 機械学習で実現可能なシステムエンジニアリングにおけるペインの命名
- Authors: Marcos Kalinowski, Daniel Mendez, Görkem Giray, Antonio Pedro Santos Alves, Kelly Azevedo, Tatiana Escovedo, Hugo Villamizar, Helio Lopes, Teresa Baldassarre, Stefan Wagner, Stefan Biffl, Jürgen Musil, Michael Felderer, Niklas Lavesson, Tony Gorschek,
- Abstract要約: 機械学習(ML)対応システムは、企業によってますます採用されている。
本稿では,ML対応システムの現状を概観する。
- 参考スコア(独自算出の注目度): 8.092979562919878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context: Machine learning (ML)-enabled systems are being increasingly adopted by companies aiming to enhance their products and operational processes. Objective: This paper aims to deliver a comprehensive overview of the current status quo of engineering ML-enabled systems and lay the foundation to steer practically relevant and problem-driven academic research. Method: We conducted an international survey to collect insights from practitioners on the current practices and problems in engineering ML-enabled systems. We received 188 complete responses from 25 countries. We conducted quantitative statistical analyses on contemporary practices using bootstrapping with confidence intervals and qualitative analyses on the reported problems using open and axial coding procedures. Results: Our survey results reinforce and extend existing empirical evidence on engineering ML-enabled systems, providing additional insights into typical ML-enabled systems project contexts, the perceived relevance and complexity of ML life cycle phases, and current practices related to problem understanding, model deployment, and model monitoring. Furthermore, the qualitative analysis provides a detailed map of the problems practitioners face within each ML life cycle phase and the problems causing overall project failure. Conclusions: The results contribute to a better understanding of the status quo and problems in practical environments. We advocate for the further adaptation and dissemination of software engineering practices to enhance the engineering of ML-enabled systems.
- Abstract(参考訳): コンテキスト: マシンラーニング(ML)対応システムは、製品や運用プロセスの強化を目指す企業によって、ますます採用されています。
目的: 本論文は, ML対応システムの現状を概観し, 実践的, 問題駆動型学術研究の基盤となることを目的としている。
方法: ML対応システムの現状と問題点について, 実践者から洞察を得るための国際調査を行った。
25カ国から188件の回答を受け取りました。
本研究では,信頼区間を有するブートストラップを用いた現代的実践に関する定量的統計分析と,オープンおよび軸方向の符号化手法を用いて報告された問題の質的分析を行った。
結果: ML対応システムに関する既存の実証的証拠を補強・拡張し,典型的なML対応システムプロジェクト状況,MLライフサイクルフェーズの認識と複雑性,問題理解,モデル展開,モデル監視に関する現在の実践について,さらなる知見を提供する。
さらに、定性的分析は、MLライフサイクルの各フェーズで実践者が直面する問題と、プロジェクト全体の失敗を引き起こす問題の詳細マップを提供する。
結論: 結果は,現状と実践環境の問題点の理解に寄与する。
我々は、ML対応システムのエンジニアリングを強化するために、ソフトウェアエンジニアリングプラクティスのさらなる適応と普及を提唱する。
関連論文リスト
- Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
近年、AI研究者や実践家は、信頼性と信頼性のある意思決定を行うシステムを構築するための原則とガイドラインを導入している。
実際には、システムが運用され、実際の環境で継続的に進化し、運用するためにデプロイされる必要がある場合に、根本的な課題が発生する。
この課題に対処するため、MLOps(Machine Learning Operations)は、デプロイメントにおけるMLソリューションを標準化するための潜在的なレシピとして登場した。
論文 参考訳(メタデータ) (2024-10-28T09:34:08Z) - ML-Enabled Systems Model Deployment and Monitoring: Status Quo and
Problems [7.280443300122617]
我々は、ML対応システムのエンジニアリング方法に関する実践的洞察を集めるために、国際調査を実施した。
モデル配置および監視段階における現状と問題点を解析した。
私たちの結果は、実践において採用されているプラクティスや問題をより深く理解する上で役立ちます。
論文 参考訳(メタデータ) (2024-02-08T00:25:30Z) - Status Quo and Problems of Requirements Engineering for Machine
Learning: Results from an International Survey [7.164324501049983]
要求工学(RE)は、機械学習対応システムにおいて多くの問題を解決するのに役立つ。
我々は,ML対応システムにおけるREの現状と問題点について,実践者の知見を収集する調査を行った。
MLプロジェクトでは,REプラクティスに有意な違いが認められた。
論文 参考訳(メタデータ) (2023-10-10T15:53:50Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
本稿では,多様なMLアルゴリズムの統一的な理解を提供する学習目的の標準化された方程式を提案する。
また、新しいMLソリューションのメカニック設計のガイダンスも提供し、すべての経験を持つパノラマ学習に向けた有望な手段として機能する。
論文 参考訳(メタデータ) (2021-08-17T17:44:38Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - A Software Engineering Perspective on Engineering Machine Learning
Systems: State of the Art and Challenges [0.0]
機械学習(ML)の進歩は、アルゴリズムが人間によってハードコードされる従来のソフトウェア開発の視点から、データから学習することで実現されたMLシステムへとシフトする。
ソフトウェアシステムの開発方法を再考し、これらの新しいタイプのシステムに必要な特質を考慮する必要があります。
論文 参考訳(メタデータ) (2020-12-14T20:06:31Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
ソフトウェア開発業界は、現代のソフトウェアシステムを高度にインテリジェントで自己学習システムに移行するために、機械学習を急速に採用している。
ソフトウェアエンジニアリングライフサイクルの段階にわたって機械学習の採用について、現状を探求する包括的な研究は存在しない。
本研究は,機械学習によるソフトウェア工学(MLSE)分類を,ソフトウェア工学ライフサイクルのさまざまな段階に適用性に応じて,最先端の機械学習技術に分類するものである。
論文 参考訳(メタデータ) (2020-05-27T11:56:56Z) - Engineering AI Systems: A Research Agenda [9.84673609667263]
私たちは、企業が機械学習を採用する際に経験する典型的な進化パターンの概念化を提供します。
論文の主なコントリビューションは、MLソリューションを取り巻く重要なエンジニアリング課題の概要を提供する、AIエンジニアリングに関する研究アジェンダである。
論文 参考訳(メタデータ) (2020-01-16T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。