論文の概要: TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification
- arxiv url: http://arxiv.org/abs/2406.04419v2
- Date: Mon, 17 Mar 2025 17:40:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 23:13:52.088941
- Title: TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification
- Title(参考訳): TSCMamba: Mambaが時系列分類のためのマルチビュー学習を発表
- Authors: Md Atik Ahamed, Qiang Cheng,
- Abstract要約: シフト等分散のような特性を持つパターンを捉えるための新しい多視点手法を提案する。
提案手法は, スペクトル, 時間, 局所, グローバルな特徴を含む多様な特徴を統合して, TSCのリッチで相補的な文脈を得る。
提案手法では,TSCモデルよりも平均精度が4.01-6.45%,7.93%向上した。
- 参考スコア(独自算出の注目度): 13.110156202816112
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multivariate time series classification (TSC) is critical for various applications in fields such as healthcare and finance. While various approaches for TSC have been explored, important properties of time series, such as shift equivariance and inversion invariance, are largely underexplored by existing works. To fill this gap, we propose a novel multi-view approach to capture patterns with properties like shift equivariance. Our method integrates diverse features, including spectral, temporal, local, and global features, to obtain rich, complementary contexts for TSC. We use continuous wavelet transform to capture time-frequency features that remain consistent even when the input is shifted in time. These features are fused with temporal convolutional or multilayer perceptron features to provide complex local and global contextual information. We utilize the Mamba state space model for efficient and scalable sequence modeling and capturing long-range dependencies in time series. Moreover, we introduce a new scanning scheme for Mamba, called tango scanning, to effectively model sequence relationships and leverage inversion invariance, thereby enhancing our model's generalization and robustness. Experiments on two sets of benchmark datasets (10+20 datasets) demonstrate our approach's effectiveness, achieving average accuracy improvements of 4.01-6.45\% and 7.93\% respectively, over leading TSC models such as TimesNet and TSLANet.
- Abstract(参考訳): 多変量時系列分類(TSC)は、医療や金融などの分野における様々な応用において重要である。
TSCに対する様々なアプローチが検討されているが、シフト等式や逆不変性といった時系列の重要な性質は、既存の研究によって明らかに過小評価されている。
このギャップを埋めるために、シフト等分散のような特性を持つパターンをキャプチャする、新しいマルチビューアプローチを提案する。
提案手法は, スペクトル, 時間, 局所, グローバルな特徴を含む多様な特徴を統合して, TSCのリッチで相補的な文脈を得る。
連続ウェーブレット変換を用いて、入力が時間内にシフトしても一貫性のある時間周波数特徴をキャプチャする。
これらの特徴は、複雑な局所的およびグローバルな文脈情報を提供するために、時間的畳み込みまたは多層パーセプトロン特徴と融合する。
我々は,Mamba状態空間モデルを用いて,時系列の長距離依存性を効率よく,スケーラブルなシーケンスモデリングとキャプチャを行う。
さらに、タンゴスキャンと呼ばれる新しいマンバの走査方式を導入し、シーケンス関係を効果的にモデル化し、逆不変性を利用して、モデルの一般化とロバスト性を向上させる。
ベンチマークデータセットの2セット(10+20データセット)の実験では、TimesNetやTSLANetといった主要なTSCモデルよりも平均精度が4.01-6.45\%と7.93\%向上した。
関連論文リスト
- MPTSNet: Integrating Multiscale Periodic Local Patterns and Global Dependencies for Multivariate Time Series Classification [18.142252811096643]
我々は,MPTSNet(Multiscale Periodic Time Series Network)を提案する。
MPTSNetは、マルチスケールな局所パターンとグローバルな相関を統合し、時系列の固有情報をフル活用する。
UEAベンチマークデータセットの実験は、提案されたMPTSNetがMTSCタスクの21の高度なベースラインを上回っていることを示している。
論文 参考訳(メタデータ) (2025-03-07T17:07:51Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - DRFormer: Multi-Scale Transformer Utilizing Diverse Receptive Fields for Long Time-Series Forecasting [3.420673126033772]
本稿では,動的スパース学習アルゴリズムを用いた動的トークン化手法を提案する。
提案するDRFormerは,実世界の様々なデータセットを用いて評価し,既存の手法と比較して,その優位性を示す実験結果を得た。
論文 参考訳(メタデータ) (2024-08-05T07:26:47Z) - Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers [55.475142494272724]
時系列予測は、様々な領域における複雑な力学の理解と予測に不可欠である。
GridTSTは、革新的な多方向性の注意を用いた2つのアプローチの利点を組み合わせたモデルである。
このモデルは、さまざまな現実世界のデータセットに対して、常に最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-05-22T16:41:21Z) - TimeMIL: Advancing Multivariate Time Series Classification via a Time-aware Multiple Instance Learning [5.244482076690776]
時系列内の関心パターンとモデリング時間依存性のより優れたローカライズを実現するために,MIL(Multiple-instance Learning)フレームワークを導入する。
TimeMILは、タイムアウェアなMILプール内で時間的相関と順序を定式化し、トークン化トランスフォーマーと特別な学習可能なウェーブレット位置トークンを利用する。
提案手法は26種類の最先端手法を超越し,MTSCにおける弱教師付きTimeMILの有効性を実証した。
論文 参考訳(メタデータ) (2024-05-06T03:27:23Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
時系列データは、その固有の長短の依存関係によって特徴づけられる。
本稿では,時系列タスクの普遍的畳み込みモデルとして,新しい時系列軽量ネットワーク(TSLANet)を導入する。
我々の実験では、TSLANetは分類、予測、異常検出にまたがる様々なタスクにおいて最先端のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-04-12T13:41:29Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
本研究では,階層化されたTime2vec埋め込み,動的グラフCNN,Transformerを統合し,グローバルかつ局所的な空間時間情報を抽出する新たな異常検出手法EdgeConvFormerを提案する。
実験により、EdgeConvFormerは、多変量時系列データから時空間モデリングを学習し、異なるスケールの多くの実世界のデータセットに対する最先端のアプローチよりも優れた異常検出性能を得ることができることが示された。
論文 参考訳(メタデータ) (2023-12-04T08:38:54Z) - Graph-Aware Contrasting for Multivariate Time-Series Classification [50.84488941336865]
既存のコントラスト学習手法は主に、時間的拡張とコントラスト技術による時間的一貫性を達成することに焦点を当てている。
MTSデータ間の空間的整合性を考慮したグラフ認識コントラストを提案する。
提案手法は,様々なMSS分類タスクにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-09-11T02:35:22Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - DCSF: Deep Convolutional Set Functions for Classification of
Asynchronous Time Series [5.339109578928972]
非同期時系列(Asynchronous Time Series)は、すべてのチャンネルが非同期に独立して観察される時系列である。
本稿では,非同期時系列分類タスクにおいて,高度にスケーラブルでメモリ効率のよい新しいフレームワークを提案する。
我々は、定期的にサンプリングされ、完全に観測される時系列の、密接に関連する問題分類のためによく研究されている畳み込みニューラルネットワークを探索する。
論文 参考訳(メタデータ) (2022-08-24T08:47:36Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Multimodal Meta-Learning for Time Series Regression [3.135152720206844]
メタラーニングを用いてモデルパラメータを新しい短史時系列に迅速に適応させるアイデアについて検討する。
提案手法は,12実験中9実験において,少ないデータでTSRを学習し,ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-05T20:50:18Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。