論文の概要: TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification
- arxiv url: http://arxiv.org/abs/2406.04419v2
- Date: Mon, 17 Mar 2025 17:40:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 07:14:35.497039
- Title: TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification
- Title(参考訳): TSCMamba: Mambaが時系列分類のためのマルチビュー学習を発表
- Authors: Md Atik Ahamed, Qiang Cheng,
- Abstract要約: シフト等分散のような特性を持つパターンを捉えるための新しい多視点手法を提案する。
提案手法は, スペクトル, 時間, 局所, グローバルな特徴を含む多様な特徴を統合して, TSCのリッチで相補的な文脈を得る。
提案手法では,TSCモデルよりも平均精度が4.01-6.45%,7.93%向上した。
- 参考スコア(独自算出の注目度): 13.110156202816112
- License:
- Abstract: Multivariate time series classification (TSC) is critical for various applications in fields such as healthcare and finance. While various approaches for TSC have been explored, important properties of time series, such as shift equivariance and inversion invariance, are largely underexplored by existing works. To fill this gap, we propose a novel multi-view approach to capture patterns with properties like shift equivariance. Our method integrates diverse features, including spectral, temporal, local, and global features, to obtain rich, complementary contexts for TSC. We use continuous wavelet transform to capture time-frequency features that remain consistent even when the input is shifted in time. These features are fused with temporal convolutional or multilayer perceptron features to provide complex local and global contextual information. We utilize the Mamba state space model for efficient and scalable sequence modeling and capturing long-range dependencies in time series. Moreover, we introduce a new scanning scheme for Mamba, called tango scanning, to effectively model sequence relationships and leverage inversion invariance, thereby enhancing our model's generalization and robustness. Experiments on two sets of benchmark datasets (10+20 datasets) demonstrate our approach's effectiveness, achieving average accuracy improvements of 4.01-6.45\% and 7.93\% respectively, over leading TSC models such as TimesNet and TSLANet.
- Abstract(参考訳): 多変量時系列分類(TSC)は、医療や金融などの分野における様々な応用において重要である。
TSCに対する様々なアプローチが検討されているが、シフト等式や逆不変性といった時系列の重要な性質は、既存の研究によって明らかに過小評価されている。
このギャップを埋めるために、シフト等分散のような特性を持つパターンをキャプチャする、新しいマルチビューアプローチを提案する。
提案手法は, スペクトル, 時間, 局所, グローバルな特徴を含む多様な特徴を統合して, TSCのリッチで相補的な文脈を得る。
連続ウェーブレット変換を用いて、入力が時間内にシフトしても一貫性のある時間周波数特徴をキャプチャする。
これらの特徴は、複雑な局所的およびグローバルな文脈情報を提供するために、時間的畳み込みまたは多層パーセプトロン特徴と融合する。
我々は,Mamba状態空間モデルを用いて,時系列の長距離依存性を効率よく,スケーラブルなシーケンスモデリングとキャプチャを行う。
さらに、タンゴスキャンと呼ばれる新しいマンバの走査方式を導入し、シーケンス関係を効果的にモデル化し、逆不変性を利用して、モデルの一般化とロバスト性を向上させる。
ベンチマークデータセットの2セット(10+20データセット)の実験では、TimesNetやTSLANetといった主要なTSCモデルよりも平均精度が4.01-6.45\%と7.93\%向上した。
関連論文リスト
- General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
周波数領域で異なる時間粒度(または対応する周波数分解能)の時系列が異なる結合分布を示すことを示す。
時間領域と周波数領域の両方からタイムアウェア表現を学習するために,新しいFourierナレッジアテンション機構を提案する。
自己回帰的空白埋め込み事前学習フレームワークを時系列解析に初めて組み込み、生成タスクに依存しない事前学習戦略を実現する。
論文 参考訳(メタデータ) (2025-02-05T15:20:04Z) - MuSiCNet: A Gradual Coarse-to-Fine Framework for Irregularly Sampled Multivariate Time Series Analysis [45.34420094525063]
我々は、不規則性は本質的にある意味で相対的であるという新しい視点を導入する。
MuSiCNetは、3つのメインストリームタスクでSOTAと一貫して競合するISMTS分析フレームワークである。
論文 参考訳(メタデータ) (2024-12-02T02:50:01Z) - TimeMIL: Advancing Multivariate Time Series Classification via a Time-aware Multiple Instance Learning [5.244482076690776]
時系列内の関心パターンとモデリング時間依存性のより優れたローカライズを実現するために,MIL(Multiple-instance Learning)フレームワークを導入する。
TimeMILは、タイムアウェアなMILプール内で時間的相関と順序を定式化し、トークン化トランスフォーマーと特別な学習可能なウェーブレット位置トークンを利用する。
提案手法は26種類の最先端手法を超越し,MTSCにおける弱教師付きTimeMILの有効性を実証した。
論文 参考訳(メタデータ) (2024-05-06T03:27:23Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
時系列データは、その固有の長短の依存関係によって特徴づけられる。
本稿では,時系列タスクの普遍的畳み込みモデルとして,新しい時系列軽量ネットワーク(TSLANet)を導入する。
我々の実験では、TSLANetは分類、予測、異常検出にまたがる様々なタスクにおいて最先端のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-04-12T13:41:29Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - DCSF: Deep Convolutional Set Functions for Classification of
Asynchronous Time Series [5.339109578928972]
非同期時系列(Asynchronous Time Series)は、すべてのチャンネルが非同期に独立して観察される時系列である。
本稿では,非同期時系列分類タスクにおいて,高度にスケーラブルでメモリ効率のよい新しいフレームワークを提案する。
我々は、定期的にサンプリングされ、完全に観測される時系列の、密接に関連する問題分類のためによく研究されている畳み込みニューラルネットワークを探索する。
論文 参考訳(メタデータ) (2022-08-24T08:47:36Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。