論文の概要: On The Importance of Reasoning for Context Retrieval in Repository-Level Code Editing
- arxiv url: http://arxiv.org/abs/2406.04464v1
- Date: Thu, 6 Jun 2024 19:44:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 18:17:07.886761
- Title: On The Importance of Reasoning for Context Retrieval in Repository-Level Code Editing
- Title(参考訳): リポジトリレベルのコード編集におけるコンテキスト検索における推論の重要性について
- Authors: Alexander Kovrigin, Aleksandra Eliseeva, Yaroslav Zharov, Timofey Bryksin,
- Abstract要約: 我々は、コンテキスト検索のタスクをリポジトリレベルのコード編集パイプラインの他のコンポーネントと分離する。
我々は、推論が収集された文脈の精度を向上させるのに役立っているが、それでもその十分性を識別する能力は欠如していると結論づける。
- 参考スコア(独自算出の注目度): 82.96523584351314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in code-fluent Large Language Models (LLMs) enabled the research on repository-level code editing. In such tasks, the model navigates and modifies the entire codebase of a project according to request. Hence, such tasks require efficient context retrieval, i.e., navigating vast codebases to gather relevant context. Despite the recognized importance of context retrieval, existing studies tend to approach repository-level coding tasks in an end-to-end manner, rendering the impact of individual components within these complicated systems unclear. In this work, we decouple the task of context retrieval from the other components of the repository-level code editing pipelines. We lay the groundwork to define the strengths and weaknesses of this component and the role that reasoning plays in it by conducting experiments that focus solely on context retrieval. We conclude that while the reasoning helps to improve the precision of the gathered context, it still lacks the ability to identify its sufficiency. We also outline the ultimate role of the specialized tools in the process of context gathering. The code supplementing this paper is available at https://github.com/JetBrains-Research/ai-agents-code-editing.
- Abstract(参考訳): LLM(Code-fluent Large Language Models)の最近の進歩は、リポジトリレベルのコード編集の研究を可能にした。
このようなタスクでは、モデルは要求に応じてプロジェクトのコードベース全体をナビゲートし、変更します。
したがって、そのようなタスクは効率的なコンテキスト検索、すなわち、関連するコンテキストを収集するために広大なコードベースをナビゲートする必要がある。
文脈検索の重要性が認識されているにもかかわらず、既存の研究はリポジトリレベルのコーディングタスクをエンドツーエンドにアプローチする傾向にあり、これらの複雑なシステム内の個々のコンポーネントの影響は不明確である。
本研究では,リポジトリレベルのコード編集パイプラインの他のコンポーネントからコンテキスト検索のタスクを分離する。
このコンポーネントの強みと弱みを定義し、文脈検索のみに焦点を当てた実験を行うことで推論が果たす役割を明らかにする。
結論として、この推論は収集された文脈の精度を向上させるのに役立つが、それでもその十分性を識別する能力は欠如している。
また、コンテキスト収集における特殊ツールの究極の役割についても概説する。
この論文を補完するコードはhttps://github.com/JetBrains-Research/ai-agents-code-editingで公開されている。
関連論文リスト
- Leverage Task Context for Object Affordance Ranking [57.59106517732223]
25の共通タスク、50k以上の画像、661k以上のオブジェクトからなる、最初の大規模タスク指向のアベイランスランキングデータセットを構築しました。
その結果,タスクコンテキストに基づくアベイランス学習のパラダイムの実現可能性と,サリエンシランキングやマルチモーダルオブジェクト検出の分野における最先端モデルよりも,我々のモデルの方が優れていることが示された。
論文 参考訳(メタデータ) (2024-11-25T04:22:33Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
検索拡張生成を用いたコード生成の系統的,大規模な解析を行う。
まず、コード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。
CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
論文 参考訳(メタデータ) (2024-06-20T16:59:52Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
リポジトリレベルのコード生成を評価するために設計された新しいベンチマークである textbfmethodnamews を提案する。
実行可能性、包括的なテストケース生成による機能的正当性、ファイル間のコンテキストの正確な利用という3つの重要な側面に注目します。
論文 参考訳(メタデータ) (2024-06-17T10:45:22Z) - GraphCoder: Enhancing Repository-Level Code Completion via Code Context Graph-based Retrieval and Language Model [30.625128161499195]
GraphCoderは検索拡張コード補完フレームワークである。
一般的なコード知識と、グラフベースの検索生成プロセスを通じてリポジトリ固有の知識を使用する。
コードマッチでは+6.06、識別子マッチでは+6.23となり、時間と空間は少ない。
論文 参考訳(メタデータ) (2024-06-11T06:55:32Z) - Class-Level Code Generation from Natural Language Using Iterative, Tool-Enhanced Reasoning over Repository [4.767858874370881]
実世界のリポジトリ内でクラスレベルのコードを生成する際に,LLMを厳格に評価するためのベンチマークであるRepoClassBenchを紹介する。
RepoClassBenchには、リポジトリの選択からJava、Python、C#にまたがる"Natural Language to Class Generation"タスクが含まれている。
Retrieve-Repotools-Reflect (RRR)は,レポジトリレベルのコンテキストを反復的にナビゲートし,推論する静的解析ツールを備えた新しいアプローチである。
論文 参考訳(メタデータ) (2024-04-22T03:52:54Z) - Repoformer: Selective Retrieval for Repository-Level Code Completion [30.706277772743615]
検索強化生成(RAG)の最近の進歩は、リポジトリレベルのコード補完の新たな時代が始まった。
本稿では,不要な場合の検索を回避するため,選択的なRAGフレームワークを提案する。
我々のフレームワークは、異なる世代モデル、レトリバー、プログラミング言語に対応できることを示します。
論文 参考訳(メタデータ) (2024-03-15T06:59:43Z) - Learning to Filter Context for Retrieval-Augmented Generation [75.18946584853316]
生成モデルは、部分的にまたは完全に無関係な経路が与えられた出力を生成するために要求される。
FILCOは、語彙と情報理論のアプローチに基づいて有用なコンテキストを特定する。
テスト時に検索したコンテキストをフィルタリングできるコンテキストフィルタリングモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-14T18:41:54Z) - On Context Distribution Shift in Task Representation Learning for
Offline Meta RL [7.8317653074640186]
我々は、文脈に基づくOMRL、特にOMRLのタスク表現学習の課題に焦点を当てる。
この問題を解決するために、堅牢なタスクコンテキストエンコーダをトレーニングするためのハードサンプリングベースの戦略を提案する。
論文 参考訳(メタデータ) (2023-04-01T16:21:55Z) - RepoCoder: Repository-Level Code Completion Through Iterative Retrieval
and Generation [96.75695811963242]
RepoCoderはリポジトリレベルのコード補完プロセスを合理化するフレームワークである。
類似性ベースのレトリバーと、事前訓練されたコード言語モデルが組み込まれている。
バニラ検索で拡張されたコード補完アプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2023-03-22T13:54:46Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
本稿では,語彙のコピーと類似したセマンティクスを持つコード参照の両方を検索により活用する検索拡張コード補完フレームワークを提案する。
我々は,Python および Java プログラミング言語のコード補完タスクにおけるアプローチを評価し,CodeXGLUE ベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-03-15T08:25:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。