論文の概要: Enhancing Precision in Tactile Internet-Enabled Remote Robotic Surgery: Kalman Filter Approach
- arxiv url: http://arxiv.org/abs/2406.04503v1
- Date: Thu, 6 Jun 2024 20:56:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 17:57:38.814350
- Title: Enhancing Precision in Tactile Internet-Enabled Remote Robotic Surgery: Kalman Filter Approach
- Title(参考訳): 触覚型遠隔ロボット手術における高精度化:カルマンフィルタアプローチ
- Authors: Muhammad Hanif Lashari, Wafa Batayneh, Ashfaq Khokhar,
- Abstract要約: 本稿では,計算効率の良い位置推定法としてカルマンフィルタ(KF)を提案する。
この研究は、ロボットアームシステムの力学系モデルに関する事前の知識も想定していない。
シミュレーションネットワーク条件下での患者側マニピュレータ(PSM)の位置決定におけるKFの有効性について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately estimating the position of a patient's side robotic arm in real time in a remote surgery task is a significant challenge, particularly in Tactile Internet (TI) environments. This paper presents a Kalman Filter (KF) based computationally efficient position estimation method. The study also assume no prior knowledge of the dynamic system model of the robotic arm system. Instead, The JIGSAW dataset, which is a comprehensive collection of robotic surgical data, and the Master Tool Manipulator's (MTM) input are utilized to learn the system model using System Identification (SI) toolkit available in Matlab. We further investigate the effectiveness of KF to determine the position of the Patient Side Manipulator (PSM) under simulated network conditions that include delays, jitter, and packet loss. These conditions reflect the typical challenges encountered in real-world Tactile Internet applications. The results of the study highlight KF's resilience and effectiveness in achieving accurate state estimation despite network-induced uncertainties with over 90\% estimation accuracy.
- Abstract(参考訳): 遠隔手術作業における患者のサイドロボットアームの位置を正確に推定することは,特にTactile Internet(TI)環境において重要な課題である。
本稿では,計算効率の良い位置推定法としてカルマンフィルタ(KF)を提案する。
この研究は、ロボットアームシステムの力学系モデルに関する事前の知識も想定していない。
その代わり、ロボット外科データの包括的収集であるJIGSAWデータセットとMaster Tool Manipulator(MTM)入力を使用して、Matlabで利用可能なシステム識別(SI)ツールキットを使用してシステムモデルを学ぶ。
さらに, 遅延, ジッタ, パケット損失を含むシミュレーションネットワーク条件下で, 患者側マニピュレータ(PSM)の位置を決定するKFの有効性について検討する。
これらの条件は、現実世界の触覚インターネットアプリケーションで遭遇する典型的な課題を反映している。
その結果,ネットワークによる不確実性にも拘わらず,精度の高い状態推定を実現する上でのKFのレジリエンスと有効性を強調した。
関連論文リスト
- REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - An LSTM Feature Imitation Network for Hand Movement Recognition from sEMG Signals [2.632402517354116]
我々は,Ninapro DB2上の300ms信号ウィンドウ上での閉形式時間特徴学習にFIN(Feature-imitating Network)を適用することを提案する。
次に、下流手の動き認識タスクに事前学習したLSTM-FINを適用して、転送学習機能について検討する。
論文 参考訳(メタデータ) (2024-05-23T21:45:15Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
侵入検知システム(IDS)は、悪意あるアクターや活動を検出することによって相互接続ネットワークを保護する上で重要な役割を果たす。
本稿では,データ不均衡にRandom Oversampling (RO) を用いる新しいMLベースのネットワーク侵入検出モデルと,次元削減のためのStacking Feature Embedding (PCA)を提案する。
CIC-IDS 2017データセットを使用すると、DT、RF、ETモデルは99.99%の精度に達し、DTとRFモデルはCIC-IDS 2018データセットで99.94%の精度が得られる。
論文 参考訳(メタデータ) (2024-01-22T05:49:41Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Visual-tactile sensing for Real-time liquid Volume Estimation in
Grasping [58.50342759993186]
変形性容器内の液体をリアルタイムに推定するためのビジュオ触覚モデルを提案する。
我々は、RGBカメラからの生の視覚入力と、特定の触覚センサーからの触覚手がかりの2つの感覚モードを融合する。
ロボットシステムは、推定モデルに基づいて、リアルタイムで適切に制御され、調整される。
論文 参考訳(メタデータ) (2022-02-23T13:38:31Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - An adaptive cognitive sensor node for ECG monitoring in the Internet of
Medical Things [0.7646713951724011]
インターネット・オブ・メディカル・モノズ(IoMT)パラダイムは、複数の臨床試験や医療処置で主流になりつつある。
本研究では,資源制約型コンピューティングプラットフォームにおける認知データ解析アルゴリズムの実装について検討する。
コンボリューションニューラルネットワークを用いて心電図のトレースを分類する手法について検討した。
論文 参考訳(メタデータ) (2021-06-11T16:49:10Z) - Assessing YOLACT++ for real time and robust instance segmentation of
medical instruments in endoscopic procedures [0.5735035463793008]
腹腔鏡下器具の画像ベースの追跡は、コンピュータおよびロボット支援手術において基本的な役割を果たす。
これまで、医療機器のセグメンテーションなどの既存のモデルは、ほとんどが2段階の検出器に基づいている。
楽器のリアルタイムインスタンスセグメンテーションを可能にするYOLACTアーキテクチャへの注意メカニズムの追加を提案する。
論文 参考訳(メタデータ) (2021-03-30T00:09:55Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
この作業は、icubロボットシミュレータの7dofアームを使用して、シミュレーション環境で実行された。
コストに敏感な能動学習手法は最適な関節構成を選択するために用いられる。
その結果,コスト依存型能動学習は標準的な能動学習手法と同等の精度を示し,実行運動の約半分を減らした。
論文 参考訳(メタデータ) (2021-01-26T16:01:02Z) - Leveraging Vision and Kinematics Data to Improve Realism of Biomechanic
Soft-tissue Simulation for Robotic Surgery [13.657060682152409]
ロボット内視鏡手術で得られたライブデータは,不正確なFEMシミュレーション結果の修正にどのように用いられるかを検討する。
我々はオープンソースのda Vinciオペレーショナルシステムを用いて,ソフトチップのファントムを探索し,シミュレーションでインタラクションを再現する。
予測メッシュ位置と測定点雲との差を補正するために,ネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-03-14T00:16:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。