M&M VTO: Multi-Garment Virtual Try-On and Editing
- URL: http://arxiv.org/abs/2406.04542v1
- Date: Thu, 6 Jun 2024 22:46:37 GMT
- Title: M&M VTO: Multi-Garment Virtual Try-On and Editing
- Authors: Luyang Zhu, Yingwei Li, Nan Liu, Hao Peng, Dawei Yang, Ira Kemelmacher-Shlizerman,
- Abstract summary: M&M VTO is a mix and match virtual try-on method that takes as input multiple garment images, text description for garment layout and an image of a person.
An example input includes: an image of a shirt, an image of a pair of pants, "rolled sleeves, shirt tucked in", and an image of a person.
The output is a visualization of how those garments (in the desired layout) would look like on the given person.
- Score: 31.45715245587691
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present M&M VTO, a mix and match virtual try-on method that takes as input multiple garment images, text description for garment layout and an image of a person. An example input includes: an image of a shirt, an image of a pair of pants, "rolled sleeves, shirt tucked in", and an image of a person. The output is a visualization of how those garments (in the desired layout) would look like on the given person. Key contributions of our method are: 1) a single stage diffusion based model, with no super resolution cascading, that allows to mix and match multiple garments at 1024x512 resolution preserving and warping intricate garment details, 2) architecture design (VTO UNet Diffusion Transformer) to disentangle denoising from person specific features, allowing for a highly effective finetuning strategy for identity preservation (6MB model per individual vs 4GB achieved with, e.g., dreambooth finetuning); solving a common identity loss problem in current virtual try-on methods, 3) layout control for multiple garments via text inputs specifically finetuned over PaLI-3 for virtual try-on task. Experimental results indicate that M&M VTO achieves state-of-the-art performance both qualitatively and quantitatively, as well as opens up new opportunities for virtual try-on via language-guided and multi-garment try-on.
Related papers
- IMAGDressing-v1: Customizable Virtual Dressing [58.44155202253754]
IMAGDressing-v1 is a virtual dressing task that generates freely editable human images with fixed garments and optional conditions.
IMAGDressing-v1 incorporates a garment UNet that captures semantic features from CLIP and texture features from VAE.
We present a hybrid attention module, including a frozen self-attention and a trainable cross-attention, to integrate garment features from the garment UNet into a frozen denoising UNet.
arXiv Detail & Related papers (2024-07-17T16:26:30Z) - MMTryon: Multi-Modal Multi-Reference Control for High-Quality Fashion Generation [70.83668869857665]
MMTryon is a multi-modal multi-reference VIrtual Try-ON framework.
It can generate high-quality compositional try-on results by taking a text instruction and multiple garment images as inputs.
arXiv Detail & Related papers (2024-05-01T11:04:22Z) - MV-VTON: Multi-View Virtual Try-On with Diffusion Models [91.71150387151042]
The goal of image-based virtual try-on is to generate an image of the target person naturally wearing the given clothing.
Existing methods solely focus on the frontal try-on using the frontal clothing.
We introduce Multi-View Virtual Try-ON (MV-VTON), which aims to reconstruct the dressing results from multiple views using the given clothes.
arXiv Detail & Related papers (2024-04-26T12:27:57Z) - Improving Diffusion Models for Authentic Virtual Try-on in the Wild [53.96244595495942]
This paper considers image-based virtual try-on, which renders an image of a person wearing a curated garment.
We propose a novel diffusion model that improves garment fidelity and generates authentic virtual try-on images.
We present a customization method using a pair of person-garment images, which significantly improves fidelity and authenticity.
arXiv Detail & Related papers (2024-03-08T08:12:18Z) - Single Stage Virtual Try-on via Deformable Attention Flows [51.70606454288168]
Virtual try-on aims to generate a photo-realistic fitting result given an in-shop garment and a reference person image.
We develop a novel Deformable Attention Flow (DAFlow) which applies the deformable attention scheme to multi-flow estimation.
Our proposed method achieves state-of-the-art performance both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-07-19T10:01:31Z) - Arbitrary Virtual Try-On Network: Characteristics Preservation and
Trade-off between Body and Clothing [85.74977256940855]
We propose an Arbitrary Virtual Try-On Network (AVTON) for all-type clothes.
AVTON can synthesize realistic try-on images by preserving and trading off characteristics of the target clothes and the reference person.
Our approach can achieve better performance compared with the state-of-the-art virtual try-on methods.
arXiv Detail & Related papers (2021-11-24T08:59:56Z) - Shape Controllable Virtual Try-on for Underwear Models [0.0]
We propose a Shape Controllable Virtual Try-On Network (SC-VTON) to dress clothing for underwear models.
SC-VTON integrates information of model and clothing to generate warped clothing image.
Our method can generate high-resolution results with detailed textures.
arXiv Detail & Related papers (2021-07-28T04:01:01Z) - Toward Accurate and Realistic Outfits Visualization with Attention to
Details [10.655149697873716]
We propose Outfit Visualization Net to capture important visual details necessary for commercial applications.
OVNet consists of 1) a semantic layout generator and 2) an image generation pipeline using multiple coordinated warps.
An interactive interface powered by this method has been deployed on fashion e-commerce websites and received overwhelmingly positive feedback.
arXiv Detail & Related papers (2021-06-11T19:53:34Z) - LGVTON: A Landmark Guided Approach to Virtual Try-On [4.617329011921226]
Given the images of two people: a person and a model, it generates a rendition of the person wearing the clothes of the model.
This is useful considering the fact that on most e-commerce websites images of only clothes are not usually available.
arXiv Detail & Related papers (2020-04-01T16:49:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.