Entanglement engineering of optomechanical systems by reinforcement learning
- URL: http://arxiv.org/abs/2406.04550v2
- Date: Tue, 2 Jul 2024 22:47:06 GMT
- Title: Entanglement engineering of optomechanical systems by reinforcement learning
- Authors: Li-Li Ye, Christian Arenz, Joseph M. Lukens, Ying-Cheng Lai,
- Abstract summary: We develop a model-free deep reinforcement-learning approach to entanglement engineering.
We employ quantum optomechanical systems with linear or nonlinear photon-phonon interactions to demonstrate the workings of our protocol.
- Score: 0.201915599621727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement is fundamental to quantum information science and technology, yet controlling and manipulating entanglement -- so-called entanglement engineering -- for arbitrary quantum systems remains a formidable challenge. There are two difficulties: the fragility of quantum entanglement and its experimental characterization. We develop a model-free deep reinforcement-learning (RL) approach to entanglement engineering, in which feedback control together with weak continuous measurement and partial state observation is exploited to generate and maintain desired entanglement. We employ quantum optomechanical systems with linear or nonlinear photon-phonon interactions to demonstrate the workings of our machine-learning-based entanglement engineering protocol. In particular, the RL agent sequentially interacts with one or multiple parallel quantum optomechanical environments, collects trajectories, and updates the policy to maximize the accumulated reward to create and stabilize quantum entanglement over an arbitrary amount of time. The machine-learning-based model-free control principle is applicable to the entanglement engineering of experimental quantum systems in general.
Related papers
- Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Robust Quantum Control in Closed and Open Systems: Theory and Practice [0.0]
This survey is written for control theorists to provide a review of the current state of quantum control and outline the challenges faced in trying to apply modern robust control to quantum systems.
We present issues that arise when applying classical robust control theory to quantum systems, typical methods used by quantum physicists to explore such systems and their robustness, as well as a discussion of open problems to be addressed in the field.
arXiv Detail & Related papers (2023-12-30T18:08:43Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Learning Quantum Systems [0.0]
Quantum technologies hold the promise to revolutionise our society with ground-breaking applications in secure communication, high-performance computing and ultra-precise sensing.
One of the main features in scaling up quantum technologies is that the complexity of quantum systems scales exponentially with their size.
This poses severe challenges in the efficient calibration, benchmarking and validation of quantum states and their dynamical control.
arXiv Detail & Related papers (2022-07-01T09:47:26Z) - Experimental graybox quantum system identification and control [2.92406842378658]
We experimentally demonstrate a "graybox" approach to construct a physical model of a quantum system and use it to design optimal control.
Our approach combines physics principles with high-accuracy machine learning and is effective with any problem where the required controlled quantities cannot be directly measured in experiments.
This method naturally extends to time-dependent and open quantum systems, with applications in quantum noise spectroscopy and cancellation.
arXiv Detail & Related papers (2022-06-24T10:19:55Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms.
We discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.
arXiv Detail & Related papers (2022-04-08T17:48:59Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
We review and extend the application of deep learning to quantum geometric control problems.
We demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems.
Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems.
arXiv Detail & Related papers (2020-06-19T19:12:14Z) - Expressibility and trainability of parameterized analog quantum systems
for machine learning applications [0.0]
We show how interplay between external driving and disorder in the system dictates the trainability and expressibility of interacting quantum systems.
Our work shows the fundamental connection between quantum many-body physics and its application in machine learning.
arXiv Detail & Related papers (2020-05-22T14:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.