Better Late Than Never: Formulating and Benchmarking Recommendation Editing
- URL: http://arxiv.org/abs/2406.04553v2
- Date: Mon, 28 Oct 2024 07:38:11 GMT
- Title: Better Late Than Never: Formulating and Benchmarking Recommendation Editing
- Authors: Chengyu Lai, Sheng Zhou, Zhimeng Jiang, Qiaoyu Tan, Yuanchen Bei, Jiawei Chen, Ningyu Zhang, Jiajun Bu,
- Abstract summary: This paper introduces recommendation editing, which focuses on modifying known and unsuitable recommendation behaviors.
We formally define the problem of recommendation editing with three primary objectives: strict rectification, collaborative rectification, and concentrated rectification.
We present a straightforward yet effective benchmark for recommendation editing using novel Bayesian Personalized Ranking Loss.
- Score: 25.52471182435051
- License:
- Abstract: Recommendation systems play a pivotal role in suggesting items to users based on their preferences. However, in online platforms, these systems inevitably offer unsuitable recommendations due to limited model capacity, poor data quality, or evolving user interests. Enhancing user experience necessitates efficiently rectify such unsuitable recommendation behaviors. This paper introduces a novel and significant task termed recommendation editing, which focuses on modifying known and unsuitable recommendation behaviors. Specifically, this task aims to adjust the recommendation model to eliminate known unsuitable items without accessing training data or retraining the model. We formally define the problem of recommendation editing with three primary objectives: strict rectification, collaborative rectification, and concentrated rectification. Three evaluation metrics are developed to quantitatively assess the achievement of each objective. We present a straightforward yet effective benchmark for recommendation editing using novel Editing Bayesian Personalized Ranking Loss. To demonstrate the effectiveness of the proposed method, we establish a comprehensive benchmark that incorporates various methods from related fields. Codebase is available at https://github.com/cycl2018/Recommendation-Editing.
Related papers
- Preference Diffusion for Recommendation [50.8692409346126]
We propose PreferDiff, a tailored optimization objective for DM-based recommenders.
PreferDiff transforms BPR into a log-likelihood ranking objective to better capture user preferences.
It is the first personalized ranking loss designed specifically for DM-based recommenders.
arXiv Detail & Related papers (2024-10-17T01:02:04Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
We aim to learn decision policies that optimize an unbiased offline estimate of an online reward metric.
We propose a single framework built on their equivalence in learning scenarios.
Our framework enables us to characterize the variance-optimal unbiased estimator and provide a closed-form solution for it.
arXiv Detail & Related papers (2024-05-09T12:52:22Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
Collaborative filtering based recommendation learns users' preferences from all users' historical behavior data, and has been popular to facilitate decision making.
A recommender system is considered unfair when it does not perform equally well for different user groups according to users' sensitive attributes.
In this paper, we study how to improve recommendation fairness from the data augmentation perspective.
arXiv Detail & Related papers (2023-02-13T13:11:46Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
Recent work has shown that feedback loops may compromise recommendation quality and homogenize user behavior.
We propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm that provably breaks feedback loops using causal inference.
We show that CAFL improves recommendation quality when compared to prior correction methods.
arXiv Detail & Related papers (2022-07-04T17:58:39Z) - Recommendation Systems with Distribution-Free Reliability Guarantees [83.80644194980042]
We show how to return a set of items rigorously guaranteed to contain mostly good items.
Our procedure endows any ranking model with rigorous finite-sample control of the false discovery rate.
We evaluate our methods on the Yahoo! Learning to Rank and MSMarco datasets.
arXiv Detail & Related papers (2022-07-04T17:49:25Z) - Introducing a Framework and a Decision Protocol to Calibrate Recommender
Systems [0.0]
This paper proposes an approach to create recommendation lists with a calibrated balance of genres.
The main claim is that calibration can contribute positively to generate fairer recommendations.
We propose a conceptual framework and a decision protocol to generate more than one thousand combinations of calibrated systems.
arXiv Detail & Related papers (2022-04-07T19:30:55Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
Top-N recommendation, which aims to learn user ranking-based preference, has long been a fundamental problem in a wide range of applications.
In this paper, we propose to reformulate the recommendation task within the causal inference framework to handle the data scarce problem.
arXiv Detail & Related papers (2021-09-02T14:28:46Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - A Differentiable Ranking Metric Using Relaxed Sorting Operation for
Top-K Recommender Systems [1.2617078020344619]
A recommender system generates personalized recommendations by computing the preference score of items, sorting the items according to the score, and filtering top-K items with high scores.
While sorting and ranking items are integral for this recommendation procedure, it is nontrivial to incorporate them in the process of end-to-end model training.
This incurs the inconsistency issue between existing learning objectives and ranking metrics of recommenders.
We present DRM that mitigates the inconsistency and improves recommendation performance by employing the differentiable relaxation of ranking metrics.
arXiv Detail & Related papers (2020-08-30T10:57:33Z) - Towards Comprehensive Recommender Systems: Time-Aware
UnifiedcRecommendations Based on Listwise Ranking of Implicit Cross-Network
Data [33.17802459749589]
We propose a novel deep learning based unified cross-network solution to mitigate cold-start and data sparsity issues.
We show that the proposed solution is superior in terms of accuracy, novelty and diversity.
Experiments conducted on the popular MovieLens dataset suggest that the proposed listwise ranking method outperforms existing state-of-the-art ranking techniques.
arXiv Detail & Related papers (2020-08-25T08:08:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.