Preference Discerning with LLM-Enhanced Generative Retrieval
- URL: http://arxiv.org/abs/2412.08604v1
- Date: Wed, 11 Dec 2024 18:26:55 GMT
- Title: Preference Discerning with LLM-Enhanced Generative Retrieval
- Authors: Fabian Paischer, Liu Yang, Linfeng Liu, Shuai Shao, Kaveh Hassani, Jiacheng Li, Ricky Chen, Zhang Gabriel Li, Xialo Gao, Wei Shao, Xue Feng, Nima Noorshams, Sem Park, Bo Long, Hamid Eghbalzadeh,
- Abstract summary: We propose a new paradigm, which we term preference discerning.
In preference dscerning, we explicitly condition a generative sequential recommendation system on user preferences within its context.
We generate user preferences using Large Language Models (LLMs) based on user reviews and item-specific data.
- Score: 28.309905847867178
- License:
- Abstract: Sequential recommendation systems aim to provide personalized recommendations for users based on their interaction history. To achieve this, they often incorporate auxiliary information, such as textual descriptions of items and auxiliary tasks, like predicting user preferences and intent. Despite numerous efforts to enhance these models, they still suffer from limited personalization. To address this issue, we propose a new paradigm, which we term preference discerning. In preference dscerning, we explicitly condition a generative sequential recommendation system on user preferences within its context. To this end, we generate user preferences using Large Language Models (LLMs) based on user reviews and item-specific data. To evaluate preference discerning capabilities of sequential recommendation systems, we introduce a novel benchmark that provides a holistic evaluation across various scenarios, including preference steering and sentiment following. We assess current state-of-the-art methods using our benchmark and show that they struggle to accurately discern user preferences. Therefore, we propose a new method named Mender ($\textbf{M}$ultimodal Prefer$\textbf{en}$ce $\textbf{d}$iscern$\textbf{er}$), which improves upon existing methods and achieves state-of-the-art performance on our benchmark. Our results show that Mender can be effectively guided by human preferences even though they have not been observed during training, paving the way toward more personalized sequential recommendation systems. We will open-source the code and benchmarks upon publication.
Related papers
- LLM-based User Profile Management for Recommender System [15.854727020186408]
PURE builds and maintains evolving user profiles by systematically extracting and summarizing key information from user reviews.
We introduce a continuous sequential recommendation task that reflects real-world scenarios by adding reviews over time and updating predictions incrementally.
Our experimental results on Amazon datasets demonstrate that PURE outperforms existing LLM-based methods.
arXiv Detail & Related papers (2025-02-20T13:20:19Z) - Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
We propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions.
For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual semi-bandit in the PVisRec setting.
arXiv Detail & Related papers (2025-02-05T17:14:45Z) - ULMRec: User-centric Large Language Model for Sequential Recommendation [16.494996929730927]
We propose ULMRec, a framework that integrates user personalized preferences into Large Language Models.
Extensive experiments on two public datasets demonstrate that ULMRec significantly outperforms existing methods.
arXiv Detail & Related papers (2024-12-07T05:37:00Z) - Preference Diffusion for Recommendation [50.8692409346126]
We propose PreferDiff, a tailored optimization objective for DM-based recommenders.
PreferDiff transforms BPR into a log-likelihood ranking objective to better capture user preferences.
It is the first personalized ranking loss designed specifically for DM-based recommenders.
arXiv Detail & Related papers (2024-10-17T01:02:04Z) - Aligning Explanations for Recommendation with Rating and Feature via Maximizing Mutual Information [29.331050754362803]
Current explanation generation methods are commonly trained with an objective to mimic existing user reviews.
We propose a flexible model-agnostic method named MMI framework to enhance the alignment between the generated natural language explanations and the predicted rating/important item features.
Our MMI framework can boost different backbone models, enabling them to outperform existing baselines in terms of alignment with predicted ratings and item features.
arXiv Detail & Related papers (2024-07-18T08:29:55Z) - How to Diversify any Personalized Recommender? [0.0]
We introduce a novel approach to improve the diversity of Top-N recommendations while maintaining accuracy.
Our approach employs a user-centric pre-processing strategy aimed at exposing users to a wide array of content categories and topics.
Using pre-processed data for training leads to recommender systems achieving performance levels comparable to, and in some cases, better than those trained on original, unmodified data.
arXiv Detail & Related papers (2024-05-03T15:02:55Z) - Impression-Aware Recommender Systems [53.48892326556546]
We present a systematic literature review on recommender systems using impressions.
We define a theoretical framework to delimit recommender systems using impressions and a novel paradigm for personalized recommendations, called impression-aware recommender systems.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - Recommendation as Instruction Following: A Large Language Model
Empowered Recommendation Approach [83.62750225073341]
We consider recommendation as instruction following by large language models (LLMs)
We first design a general instruction format for describing the preference, intention, task form and context of a user in natural language.
Then we manually design 39 instruction templates and automatically generate a large amount of user-personalized instruction data.
arXiv Detail & Related papers (2023-05-11T17:39:07Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - Sequential recommendation with metric models based on frequent sequences [0.688204255655161]
We propose to use frequent sequences to identify the most relevant part of the user history for the recommendation.
The most salient items are then used in a unified metric model that embeds items based on user preferences and sequential dynamics.
arXiv Detail & Related papers (2020-08-12T22:08:04Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.