論文の概要: Predicting Polymer Properties Based on Multimodal Multitask Pretraining
- arxiv url: http://arxiv.org/abs/2406.04727v1
- Date: Fri, 7 Jun 2024 08:19:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 14:59:58.603194
- Title: Predicting Polymer Properties Based on Multimodal Multitask Pretraining
- Title(参考訳): マルチモーダルマルチタスク事前学習に基づく高分子特性の予測
- Authors: Fanmeng Wang, Wentao Guo, Minjie Cheng, Shen Yuan, Hongteng Xu, Zhifeng Gao,
- Abstract要約: MMPolymerは、ポリマー1Dシーケンシャル情報と3D構造情報の両方を組み込んだ新しいマルチタスク事前学習フレームワークである。
MMPolymerは様々なポリマー特性予測タスクにおいて最先端の性能を達成する。
- 参考スコア(独自算出の注目度): 24.975491375575224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past few decades, polymers, high-molecular-weight compounds formed by bonding numerous identical or similar monomers covalently, have played an essential role in various scientific fields. In this context, accurate prediction of their properties is becoming increasingly crucial. Typically, the properties of a polymer, such as plasticity, conductivity, bio-compatibility, and so on, are highly correlated with its 3D structure. However, current methods for predicting polymer properties heavily rely on information from polymer SMILES sequences (P-SMILES strings) while ignoring crucial 3D structural information, leading to sub-optimal performance. In this work, we propose MMPolymer, a novel multimodal multitask pretraining framework incorporating both polymer 1D sequential information and 3D structural information to enhance downstream polymer property prediction tasks. Besides, to overcome the limited availability of polymer 3D data, we further propose the "Star Substitution" strategy to extract 3D structural information effectively. During pretraining, MMPolymer not only predicts masked tokens and recovers 3D coordinates but also achieves the cross-modal alignment of latent representation. Subsequently, we further fine-tune the pretrained MMPolymer for downstream polymer property prediction tasks in the supervised learning paradigm. Experimental results demonstrate that MMPolymer achieves state-of-the-art performance in various polymer property prediction tasks. Moreover, leveraging the pretrained MMPolymer and using only one modality (either P-SMILES string or 3D conformation) during fine-tuning can also surpass existing polymer property prediction methods, highlighting the exceptional capability of MMPolymer in polymer feature extraction and utilization. Our online platform for polymer property prediction is available at https://app.bohrium.dp.tech/mmpolymer.
- Abstract(参考訳): 過去数十年間、多くの同一または類似のモノマーを共有結合して形成される高分子、高分子は、様々な科学分野において重要な役割を担ってきた。
この文脈では、それらの性質の正確な予測がますます重要になっている。
通常、可塑性、導電性、生体適合性などのポリマーの性質は、その3D構造と強く相関している。
しかし、現在のポリマー特性予測法は、重要な3D構造情報を無視しながら、ポリマーSMILES配列(P-SMILES文字列)の情報に大きく依存し、準最適性能をもたらす。
本研究では,高分子1Dシーケンシャル情報と3D構造情報の両方を組み込んだマルチモーダル・マルチタスク事前学習フレームワークMMPolymerを提案する。
さらに, ポリマー3Dデータの可用性の限界を克服するため, さらに, 3次元構造情報を効果的に抽出する「スター代替」戦略を提案する。
事前トレーニング中、MMPolymerはマスク付きトークンを予測し、3D座標を復元するだけでなく、潜在表現の相互アライメントも達成する。
その後、教師付き学習パラダイムにおける下流ポリマー特性予測タスクのために、事前学習したMMPolymerをさらに微調整する。
MMPolymerは, 種々のポリマー特性予測タスクにおいて, 最先端性能を実現することを実証した。
さらに, MMポリマーを予め訓練し, 1つのモダリティ(P-SMILES文字列または3Dコンホメーション)のみを用いることで, 既存のポリマー特性予測法を超越し, MMポリマーの高分子特性抽出・利用における特異性を強調した。
ポリマー特性予測のためのオンラインプラットフォームはhttps://app.bohrium.dp.tech/mm Polymerで利用可能です。
関連論文リスト
- Molecular topological deep learning for polymer property prediction [18.602659324026934]
高分子特性解析のための分子トポロジカルディープラーニング(Mol-TDL)を開発した。
Mol-TDLは高次相互作用とマルチスケール特性の両方をトポロジカルディープラーニングアーキテクチャに組み込んでいる。
論文 参考訳(メタデータ) (2024-10-07T05:44:02Z) - Automated 3D Pre-Training for Molecular Property Prediction [54.15788181794094]
新たな3D事前学習フレームワーク(3D PGT)を提案する。
3D分子グラフのモデルを事前訓練し、3D構造のない分子グラフに微調整する。
提案した3次元PGTの精度, 効率, 一般化能力を示すために, 2次元分子グラフの大規模実験を行った。
論文 参考訳(メタデータ) (2023-06-13T14:43:13Z) - Photonic Quantum Computing For Polymer Classification [62.997667081978825]
2つのポリマークラス (VIS) と近赤外 (NIR) は, ポリマーギャップの大きさに基づいて定義される。
高分子構造の二項分類に対する古典量子ハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2022-11-22T11:59:52Z) - TransPolymer: a Transformer-based language model for polymer property
predictions [9.04563945965023]
TransPolymerは、トランスフォーマーをベースとした、高分子特性予測のための言語モデルである。
ケミカル・アウェアネスを用いたポリマー・トークンーザは, ポリマー配列からの学習表現を可能にする。
論文 参考訳(メタデータ) (2022-09-03T01:29:59Z) - Representing Polymers as Periodic Graphs with Learned Descriptors for
Accurate Polymer Property Predictions [16.468017785818198]
我々は、手書きの表現を一貫して上回る周期性ポリマーグラフ表現を開発する。
また,高分子グラフ表現とメッセージパッシングニューラルネットワークアーキテクチャを組み合わせることで,意味のある高分子の特徴を自動的に抽出する方法を実証する。
論文 参考訳(メタデータ) (2022-05-27T04:14:12Z) - A graph representation of molecular ensembles for polymer property
prediction [3.032184156362992]
有機分子とは対照的に、ポリマーはよく定義された単一構造ではなく、類似した分子の集合体である。
本稿では,分子アンサンブルのグラフ表現と,高分子特性予測に適したグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-05-17T20:31:43Z) - Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers [124.01928050651466]
本稿では,Polyp-PVTと呼ばれる新しいタイプのPolypセグメンテーション手法を提案する。
提案モデルであるPolyp-PVTは,特徴の雑音を効果的に抑制し,その表現能力を大幅に向上させる。
論文 参考訳(メタデータ) (2021-08-16T07:09:06Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Copolymer Informatics with Multi-Task Deep Neural Networks [0.0]
コポリマーの性質予測の課題に取り組み、ホモポリマーを超えてポリマーインフォマティクスフレームワークを拡張します。
2つのモノマーのホモポリマーと共重合体のガラス転移、融解、分解温度の18,000以上のデータポイントを含む大きなデータセットを用いる。
開発されたモデルは、適切なデータが利用可能になったときに、よりコポリマー特性に正確、迅速、柔軟、スケーラブルです。
論文 参考訳(メタデータ) (2021-03-25T23:28:20Z) - Polymers for Extreme Conditions Designed Using Syntax-Directed
Variational Autoencoders [53.34780987686359]
現在、機械学習ツールは、望まれる特性を持つ材料候補を事実上スクリーニングするために使用される。
このアプローチは非効率であり、人間の想像力が知覚できる候補によって厳しく制約されている。
文法指向の変分オートエンコーダ(VAE)とガウス過程回帰(GPR)モデルを用いて、3つの極端な条件下で頑健なポリマーを発見する。
論文 参考訳(メタデータ) (2020-11-04T21:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。