論文の概要: Efficient Continual Finite-Sum Minimization
- arxiv url: http://arxiv.org/abs/2406.04731v1
- Date: Fri, 7 Jun 2024 08:26:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 14:59:58.600628
- Title: Efficient Continual Finite-Sum Minimization
- Title(参考訳): 効率的な連続有限和最小化
- Authors: Ioannis Mavrothalassitis, Stratis Skoulakis, Leello Tadesse Dadi, Volkan Cevher,
- Abstract要約: 連続有限サム最小化(continuous finite-sum minimization)と呼ばれる有限サム最小化の鍵となるツイストを提案する。
我々のアプローチは$mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$で大幅に改善されます。
また、$mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$という自然な一階法は存在しないことを証明し、この方法の第一階法がほぼ密であることを示す。
- 参考スコア(独自算出の注目度): 52.5238287567572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a sequence of functions $f_1,\ldots,f_n$ with $f_i:\mathcal{D}\mapsto \mathbb{R}$, finite-sum minimization seeks a point ${x}^\star \in \mathcal{D}$ minimizing $\sum_{j=1}^n f_j(x)/n$. In this work, we propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization, that asks for a sequence of points ${x}_1^\star,\ldots,{x}_n^\star \in \mathcal{D}$ such that each ${x}^\star_i \in \mathcal{D}$ minimizes the prefix-sum $\sum_{j=1}^if_j(x)/i$. Assuming that each prefix-sum is strongly convex, we develop a first-order continual stochastic variance reduction gradient method ($\mathrm{CSVRG}$) producing an $\epsilon$-optimal sequence with $\mathcal{\tilde{O}}(n/\epsilon^{1/3} + 1/\sqrt{\epsilon})$ overall first-order oracles (FO). An FO corresponds to the computation of a single gradient $\nabla f_j(x)$ at a given $x \in \mathcal{D}$ for some $j \in [n]$. Our approach significantly improves upon the $\mathcal{O}(n/\epsilon)$ FOs that $\mathrm{StochasticGradientDescent}$ requires and the $\mathcal{O}(n^2 \log (1/\epsilon))$ FOs that state-of-the-art variance reduction methods such as $\mathrm{Katyusha}$ require. We also prove that there is no natural first-order method with $\mathcal{O}\left(n/\epsilon^\alpha\right)$ gradient complexity for $\alpha < 1/4$, establishing that the first-order complexity of our method is nearly tight.
- Abstract(参考訳): f_1,\ldots,f_n$ with $f_i:\mathcal{D}\mapsto \mathbb{R}$を与えられたとき、有限サム最小化は点 ${x}^\star \in \mathcal{D}$ minimize $\sum_{j=1}^n f_j(x)/n$ を求める。
本研究では、連続有限サム最小化 (continuous finite-sum minimization) と呼ばれる有限サム最小化への鍵となるツイストを提案し、各${x}^\star_i \in \mathcal{D}$ がプレフィックスサム$\sum_{j=1}^if_j(x)/i$ を最小化するように点 ${x}_1^\star,{x}_n^\star \in \mathcal{D}$ の列を求める。
それぞれの接頭辞が強凸であると仮定すると、一階連続確率分散減少勾配法(\mathrm{CSVRG}$)を開発し、$\mathcal{\tilde{O}}(n/\epsilon^{1/3} + 1/\sqrt{\epsilon})$1次オラクル(FO)で$\epsilon$-optimal sequenceを生成する。
FO は与えられた$x \in \mathcal{D}$に対して 1 つの勾配 $\nabla f_j(x)$ の計算に対応する。
我々のアプローチは$\mathcal{O}(n/\epsilon)$ FOs that $\mathrm{StochasticGradientDescent}$ requires と $\mathcal{O}(n^2 \log (1/\epsilon)$ FOs that state-of-the-art variance reduction method such as $\mathrm{Katyusha}$ requires。
また、$\mathcal{O}\left(n/\epsilon^\alpha\right)$gradient complexity for $\alpha < 1/4$という自然な一階法が存在しないことを証明し、この方法の第一階法がほぼ密であることを示す。
関連論文リスト
- Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
本稿では, 2次行列分解(BMF)問題に対する効率的な$(1+varepsilon)$-approximationアルゴリズムを提案する。
目標は、低ランク因子の積として$mathbfA$を近似することである。
我々の手法はBMF問題の他の一般的な変種に一般化する。
論文 参考訳(メタデータ) (2023-06-02T18:55:27Z) - Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization [20.54801745090522]
我々は、mathbbRd f(x) 三角形q mathbbE_xi [Fxi]$inf(x)$ Lipschitz における $min_x という形式の問題を考察する。
最近提案された勾配なし法は、少なくとも$mathcalO(L4 d3/2 epsilon-4 + Goldstein L d3/2 delta-1 epsilon-4)$ 0次複雑性を必要とする。
論文 参考訳(メタデータ) (2023-01-16T13:33:37Z) - An Optimal Algorithm for Strongly Convex Min-min Optimization [79.11017157526815]
既存の最適な一階法には$mathcalO(sqrtmaxkappa_x,kappa_y log 1/epsilon)$nabla_x f(x,y)$と$nabla_y f(x,y)$の両方の計算が必要である。
我々は$mathcalO(sqrtkappa_x log 1/epsilon)$nabla_x f(x,
論文 参考訳(メタデータ) (2022-12-29T19:26:12Z) - Decentralized Stochastic Variance Reduced Extragradient Method [25.21457349137344]
本稿では,$min_xmax_y fx,y triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumiの分散凸-凹極小最適化問題を考察する。
論文 参考訳(メタデータ) (2022-02-01T16:06:20Z) - The planted matching problem: Sharp threshold and infinite-order phase
transition [25.41713098167692]
ランダムに重み付けされた$ntimes n$ bipartite graphに隠された完全マッチング$M*$を再構築する問題について検討する。
任意の小さな定数 $epsilon>0$ に対して $sqrtd B(mathcalP,mathcalQ) ge 1+epsilon$ が成り立つ場合、任意の推定値の再構築誤差は $0$ から有界であることが示される。
論文 参考訳(メタデータ) (2021-03-17T00:59:33Z) - Linear Bandits on Uniformly Convex Sets [88.3673525964507]
線形バンディットアルゴリズムはコンパクト凸作用集合上の $tildemathcalo(nsqrtt)$ pseudo-regret 境界を与える。
2種類の構造的仮定は、より良い擬似回帰境界をもたらす。
論文 参考訳(メタデータ) (2021-03-10T07:33:03Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
S$状態、$A$アクション、割引係数$gamma in (0,1)$、近似しきい値$epsilon > 0$の MDP が与えられた場合、$epsilon$-Optimal Policy を学ぶためのモデルなしアルゴリズムを提供する。
十分小さな$epsilon$の場合、サンプルの複雑さで改良されたアルゴリズムを示す。
論文 参考訳(メタデータ) (2020-06-06T13:34:41Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
有限和の有限ノイズ構造を利用して、大域オラクルモデルの下での一致する$O(n2)$-upper境界を導出する。
同様のアプローチを踏襲したSVRGの新規な適応法を提案し、これはオラクルと互換性があり、$tildeO(n2+nsqrtL/mu)log (1/epsilon)$と$O(nsqrtL/epsilon)$, for $mu>0$と$mu=0$の複雑さ境界を実現する。
論文 参考訳(メタデータ) (2020-02-09T03:39:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。