Confidence-aware Contrastive Learning for Selective Classification
- URL: http://arxiv.org/abs/2406.04745v1
- Date: Fri, 7 Jun 2024 08:43:53 GMT
- Title: Confidence-aware Contrastive Learning for Selective Classification
- Authors: Yu-Chang Wu, Shen-Huan Lyu, Haopu Shang, Xiangyu Wang, Chao Qian,
- Abstract summary: This work provides a generalization bound for selective classification, disclosing that optimizing feature layers helps improve the performance of selective classification.
Inspired by this theory, we propose to explicitly improve the selective classification model at the feature level for the first time, leading to a novel Confidence-aware Contrastive Learning method for Selective Classification, CCL-SC.
- Score: 20.573658672018066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Selective classification enables models to make predictions only when they are sufficiently confident, aiming to enhance safety and reliability, which is important in high-stakes scenarios. Previous methods mainly use deep neural networks and focus on modifying the architecture of classification layers to enable the model to estimate the confidence of its prediction. This work provides a generalization bound for selective classification, disclosing that optimizing feature layers helps improve the performance of selective classification. Inspired by this theory, we propose to explicitly improve the selective classification model at the feature level for the first time, leading to a novel Confidence-aware Contrastive Learning method for Selective Classification, CCL-SC, which similarizes the features of homogeneous instances and differentiates the features of heterogeneous instances, with the strength controlled by the model's confidence. The experimental results on typical datasets, i.e., CIFAR-10, CIFAR-100, CelebA, and ImageNet, show that CCL-SC achieves significantly lower selective risk than state-of-the-art methods, across almost all coverage degrees. Moreover, it can be combined with existing methods to bring further improvement.
Related papers
- Hierarchical Selective Classification [17.136832159667204]
This paper introduces hierarchical selective classification, extending selective classification to a hierarchical setting.
We first formalize hierarchical risk and coverage, and introduce hierarchical risk-coverage curves.
Next, we develop algorithms for hierarchical selective classification, and propose an efficient algorithm that guarantees a target accuracy constraint with high probability.
arXiv Detail & Related papers (2024-05-19T12:24:30Z) - Bayesian Exploration of Pre-trained Models for Low-shot Image Classification [14.211305168954594]
This work proposes a simple and effective probabilistic model ensemble framework based on Gaussian processes.
We achieve the integration of prior knowledge by specifying the mean function with CLIP and the kernel function.
We demonstrate that our method consistently outperforms competitive ensemble baselines regarding predictive performance.
arXiv Detail & Related papers (2024-03-30T10:25:28Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - AUC-based Selective Classification [5.406386303264086]
We propose a model-agnostic approach to associate a selection function to a given binary classifier.
We provide both theoretical justifications and a novel algorithm, called $AUCross$, to achieve such a goal.
Experiments show that $AUCross$ succeeds in trading-off coverage for AUC, improving over existing selective classification methods targeted at optimizing accuracy.
arXiv Detail & Related papers (2022-10-19T16:29:50Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes)
We explore an understudied real-world setting of CIL that starts with a strong model pre-trained on a large number of base classes.
Our proposed method is robust and generalizes to all analyzed CIL settings.
arXiv Detail & Related papers (2022-04-07T17:58:07Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
One-sided prediction (OSP) based relaxation yields an SC scheme that attains near-optimal coverage in the practically relevant high target accuracy regime.
We theoretically derive bounds generalization for SC and OSP, and empirically we show that our scheme strongly outperforms state of the art methods in coverage at small error levels.
arXiv Detail & Related papers (2020-10-15T16:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.