Hierarchical Selective Classification
- URL: http://arxiv.org/abs/2405.11533v1
- Date: Sun, 19 May 2024 12:24:30 GMT
- Title: Hierarchical Selective Classification
- Authors: Shani Goren, Ido Galil, Ran El-Yaniv,
- Abstract summary: This paper introduces hierarchical selective classification, extending selective classification to a hierarchical setting.
We first formalize hierarchical risk and coverage, and introduce hierarchical risk-coverage curves.
Next, we develop algorithms for hierarchical selective classification, and propose an efficient algorithm that guarantees a target accuracy constraint with high probability.
- Score: 17.136832159667204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deploying deep neural networks for risk-sensitive tasks necessitates an uncertainty estimation mechanism. This paper introduces hierarchical selective classification, extending selective classification to a hierarchical setting. Our approach leverages the inherent structure of class relationships, enabling models to reduce the specificity of their predictions when faced with uncertainty. In this paper, we first formalize hierarchical risk and coverage, and introduce hierarchical risk-coverage curves. Next, we develop algorithms for hierarchical selective classification (which we refer to as "inference rules"), and propose an efficient algorithm that guarantees a target accuracy constraint with high probability. Lastly, we conduct extensive empirical studies on over a thousand ImageNet classifiers, revealing that training regimes such as CLIP, pretraining on ImageNet21k and knowledge distillation boost hierarchical selective performance.
Related papers
- Confidence-aware Contrastive Learning for Selective Classification [20.573658672018066]
This work provides a generalization bound for selective classification, disclosing that optimizing feature layers helps improve the performance of selective classification.
Inspired by this theory, we propose to explicitly improve the selective classification model at the feature level for the first time, leading to a novel Confidence-aware Contrastive Learning method for Selective Classification, CCL-SC.
arXiv Detail & Related papers (2024-06-07T08:43:53Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
Few-shot adaptation methods do not fare well in the taxonomic open set (TOS) setting.
We propose a prompt tuning technique that calibrates the hierarchical consistency of model predictions.
A new Prompt Tuning for Hierarchical Consistency (ProTeCt) technique is then proposed to calibrate classification across label set granularities.
arXiv Detail & Related papers (2023-06-04T02:55:25Z) - AUC-based Selective Classification [5.406386303264086]
We propose a model-agnostic approach to associate a selection function to a given binary classifier.
We provide both theoretical justifications and a novel algorithm, called $AUCross$, to achieve such a goal.
Experiments show that $AUCross$ succeeds in trading-off coverage for AUC, improving over existing selective classification methods targeted at optimizing accuracy.
arXiv Detail & Related papers (2022-10-19T16:29:50Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - A Top-down Supervised Learning Approach to Hierarchical Multi-label
Classification in Networks [0.21485350418225244]
This paper presents a general prediction model to hierarchical multi-label classification (HMC), where the attributes to be inferred can be specified as a strict poset.
It is based on a top-down classification approach that addresses hierarchical multi-label classification with supervised learning by building a local classifier per class.
The proposed model is showcased with a case study on the prediction of gene functions for Oryza sativa Japonica, a variety of rice.
arXiv Detail & Related papers (2022-03-23T17:29:17Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - United We Learn Better: Harvesting Learning Improvements From Class
Hierarchies Across Tasks [9.687531080021813]
We present a theoretical framework based on probability and set theory for extracting parent predictions and a hierarchical loss.
Results show results across classification and detection benchmarks and opening up the possibility of hierarchical learning for sigmoid-based detection architectures.
arXiv Detail & Related papers (2021-07-28T20:25:37Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
One-sided prediction (OSP) based relaxation yields an SC scheme that attains near-optimal coverage in the practically relevant high target accuracy regime.
We theoretically derive bounds generalization for SC and OSP, and empirically we show that our scheme strongly outperforms state of the art methods in coverage at small error levels.
arXiv Detail & Related papers (2020-10-15T16:14:27Z) - Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier [68.38233199030908]
Long-tail recognition tackles the natural non-uniformly distributed data in realworld scenarios.
While moderns perform well on populated classes, its performance degrades significantly on tail classes.
Deep-RTC is proposed as a new solution to the long-tail problem, combining realism with hierarchical predictions.
arXiv Detail & Related papers (2020-07-20T05:57:42Z) - A general framework for defining and optimizing robustness [74.67016173858497]
We propose a rigorous and flexible framework for defining different types of robustness properties for classifiers.
Our concept is based on postulates that robustness of a classifier should be considered as a property that is independent of accuracy.
We develop a very general robustness framework that is applicable to any type of classification model.
arXiv Detail & Related papers (2020-06-19T13:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.