Mobile Network Configuration Recommendation using Deep Generative Graph Neural Network
- URL: http://arxiv.org/abs/2406.04779v1
- Date: Fri, 7 Jun 2024 09:28:18 GMT
- Title: Mobile Network Configuration Recommendation using Deep Generative Graph Neural Network
- Authors: Shirwan Piroti, Ashima Chawla, Tahar Zanouda,
- Abstract summary: A framework using a Deep Generative Graph Neural Network (GNN) is proposed.
It encodes the network into a graph, extracts subgraphs for each RAN node, and employs a Siamese GNN to learn embeddings.
The framework recommends configuration parameters for a multitude of parameters and detects misconfigurations, handling both network expansion and existing cell reconfiguration.
- Score: 0.40964539027092917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There are vast number of configurable parameters in a Radio Access Telecom Network. A significant amount of these parameters is configured by Radio Node or cell based on their deployment setting. Traditional methods rely on domain knowledge for individual parameter configuration, often leading to sub-optimal results. To improve this, a framework using a Deep Generative Graph Neural Network (GNN) is proposed. It encodes the network into a graph, extracts subgraphs for each RAN node, and employs a Siamese GNN (S-GNN) to learn embeddings. The framework recommends configuration parameters for a multitude of parameters and detects misconfigurations, handling both network expansion and existing cell reconfiguration. Tested on real-world data, the model surpasses baselines, demonstrating accuracy, generalizability, and robustness against concept drift.
Related papers
- GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data [14.124731264553889]
We propose GCondNet to enhance neural networks by leveraging implicit structures present in data.
GCondNet exploits the data's high-dimensionality, and thus improves the performance of an underlying predictor network.
We demonstrate GCondNet's effectiveness on 12 real-world datasets, where it outperforms 14 standard and state-of-the-art methods.
arXiv Detail & Related papers (2022-11-11T16:13:34Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Fast Power Control Adaptation via Meta-Learning for Random Edge Graph
Neural Networks [39.59987601426039]
This paper studies the higher-level problem of enabling fast adaption of the power control policy to time-varying topologies.
We apply first-order meta-learning on data from multiple topologies with the aim of optimizing for a few-shot adaptation to new network configurations.
arXiv Detail & Related papers (2021-05-02T12:43:10Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Ensembled sparse-input hierarchical networks for high-dimensional
datasets [8.629912408966145]
We show that dense neural networks can be a practical data analysis tool in settings with small sample sizes.
A proposed method appropriately prunes the network structure by tuning only two L1-penalty parameters.
On a collection of real-world datasets with different sizes, EASIER-net selected network architectures in a data-adaptive manner and achieved higher prediction accuracy than off-the-shelf methods on average.
arXiv Detail & Related papers (2020-05-11T02:08:53Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
This paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet.
An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors.
This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs)
arXiv Detail & Related papers (2020-01-21T15:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.