論文の概要: Black Box Differential Privacy Auditing Using Total Variation Distance
- arxiv url: http://arxiv.org/abs/2406.04827v2
- Date: Fri, 5 Jul 2024 21:38:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 01:20:00.707700
- Title: Black Box Differential Privacy Auditing Using Total Variation Distance
- Title(参考訳): 全変動距離を用いたブラックボックスの識別プライバシー監査
- Authors: Antti Koskela, Jafar Mohammadi,
- Abstract要約: 本稿では,機械学習モデルにおける差分プライバシ保証を,小さなホールドアウトデータセットを用いて評価する実践的手法を提案する。
本手法は,トレーニングデータのサブセットとホールドアウトデータセットを用いて得られたスコア間の総変動(TV)距離を推定する。
- 参考スコア(独自算出の注目度): 3.830092569453011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a practical method to audit the differential privacy (DP) guarantees of a machine learning model using a small hold-out dataset that is not exposed to the model during the training. Having a score function such as the loss function employed during the training, our method estimates the total variation (TV) distance between scores obtained with a subset of the training data and the hold-out dataset. With some meta information about the underlying DP training algorithm, these TV distance values can be converted to $(\varepsilon,\delta)$-guarantees for any $\delta$. We show that these score distributions asymptotically give lower bounds for the DP guarantees of the underlying training algorithm, however, we perform a one-shot estimation for practicality reasons. We specify conditions that lead to lower bounds for the DP guarantees with high probability. To estimate the TV distance between the score distributions, we use a simple density estimation method based on histograms. We show that the TV distance gives a very close to optimally robust estimator and has an error rate $\mathcal{O}(k^{-1/3})$, where $k$ is the total number of samples. Numerical experiments on benchmark datasets illustrate the effectiveness of our approach and show improvements over baseline methods for black-box auditing.
- Abstract(参考訳): 本稿では、トレーニング中にモデルに露出しない小さなホールドアウトデータセットを用いて、機械学習モデルの差分プライバシー(DP)保証を監査する実践的手法を提案する。
トレーニング中に発生する損失関数などのスコア関数を用いて,トレーニングデータのサブセットから得られたスコア間の総変動(TV)距離を推定する。
基礎となるDPトレーニングアルゴリズムに関するメタ情報により、これらのテレビ距離値は任意の$\delta$に対して$(\varepsilon,\delta)$-guaranteesに変換することができる。
本研究は,これらのスコア分布が,基礎となるトレーニングアルゴリズムのDP保証に対して,漸近的に低い限界を与えることを示すが,実際的な理由から,単発評価を行う。
DP保証の低い境界につながる条件を高い確率で指定する。
スコア分布間のテレビ距離を推定するために,ヒストグラムに基づく簡易密度推定法を用いる。
テレビの距離が最適に頑健な推定器に非常に近いことを示し、誤差レートが$\mathcal{O}(k^{-1/3})$であり、$k$はサンプルの総数であることを示す。
ベンチマークデータセットの数値実験は,提案手法の有効性を示し,ブラックボックス監査におけるベースライン手法の改善を示す。
関連論文リスト
- Noise-Aware Differentially Private Variational Inference [5.4619385369457225]
差分プライバシー(DP)は統計的推測に対して堅牢なプライバシー保証を提供するが、これは下流アプリケーションにおいて信頼性の低い結果とバイアスをもたらす可能性がある。
勾配変動推定に基づく雑音を考慮した近似ベイズ推定法を提案する。
また,より正確な雑音認識後部評価手法を提案する。
論文 参考訳(メタデータ) (2024-10-25T08:18:49Z) - Benchmarking Secure Sampling Protocols for Differential Privacy [3.0325535716232404]
微分プライバシ(DP)の2つのよく知られたモデルは、中心モデルと局所モデルである。
近年,分散環境でのセキュアマルチパーティ計算(MPC)によるDPの実現が提案されている。
論文 参考訳(メタデータ) (2024-09-16T19:04:47Z) - Adaptive Differentially Quantized Subspace Perturbation (ADQSP): A Unified Framework for Privacy-Preserving Distributed Average Consensus [6.364764301218972]
本稿では適応微分量子化部分空間(ADQSP)という一般手法を提案する。
本研究では,単一の量子化パラメータを変化させることで,提案手法がSMPC型の性能とDP型性能に異なることを示す。
この結果から,従来の分散信号処理ツールを暗号保証に活用する可能性が示唆された。
論文 参考訳(メタデータ) (2023-12-13T07:52:16Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
機械学習の安全性クリティカルな応用においては、モデルが保守的であることが望ましいことが多い。
本研究では,不確実性データセットに対する信頼性を最小化するデータ駆動信頼性最小化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:05:36Z) - Simulation-based, Finite-sample Inference for Privatized Data [14.218697973204065]
本稿では,統計的に有効な信頼区間と仮説テストを生成するためのシミュレーションベースの"repro sample"手法を提案する。
本手法は様々な個人推論問題に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-03-09T15:19:31Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
雑音分布の明示的な表現に依存しない新しい制御器合成法を提案する。
まず、連続制御系を有限状態モデルに抽象化し、離散状態間の確率的遷移によってノイズを捕捉する。
我々は最先端の検証技術を用いてマルコフ決定プロセスの間隔を保証し、これらの保証が元の制御システムに受け継がれるコントローラを演算する。
論文 参考訳(メタデータ) (2023-01-04T10:40:30Z) - Privacy Amplification via Shuffled Check-Ins [2.3333090554192615]
シャッフルチェックインと呼ばれる分散計算のためのプロトコルについて検討する。
信頼できるシャフラー以上の信頼の前提を必要とせずに、強力なプライバシー保証を実現する。
シャッフルされたチェックインは、プライバシーの強化によって、厳格なプライバシー保証を実現する。
論文 参考訳(メタデータ) (2022-06-07T09:55:15Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian
Noise [59.47042225257565]
雑音分布の明示的な表現に依存しない新しい計画法を提案する。
まず、連続系を離散状態モデルに抽象化し、状態間の確率的遷移によってノイズを捕捉する。
いわゆる区間マルコフ決定過程(iMDP)の遷移確率区間におけるこれらの境界を捉える。
論文 参考訳(メタデータ) (2021-10-25T06:18:55Z) - On the Practicality of Differential Privacy in Federated Learning by
Tuning Iteration Times [51.61278695776151]
フェデレートラーニング(FL)は、分散クライアント間で機械学習モデルを協調的にトレーニングする際のプライバシ保護でよく知られている。
最近の研究では、naive flは勾配リーク攻撃の影響を受けやすいことが指摘されている。
ディファレンシャルプライバシ(dp)は、勾配漏洩攻撃を防御するための有望な対策として現れる。
論文 参考訳(メタデータ) (2021-01-11T19:43:12Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。