論文の概要: Revisiting Catastrophic Forgetting in Large Language Model Tuning
- arxiv url: http://arxiv.org/abs/2406.04836v1
- Date: Fri, 7 Jun 2024 11:09:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 14:30:43.501819
- Title: Revisiting Catastrophic Forgetting in Large Language Model Tuning
- Title(参考訳): 大規模言語モデルチューニングにおける破滅的予測の再検討
- Authors: Hongyu Li, Liang Ding, Meng Fang, Dacheng Tao,
- Abstract要約: Catastrophic Forgetting (CF) は、新しいデータを学ぶ際に獲得した知識を忘れるモデルを意味する。
本稿では,モデル損失景観の平坦度と大規模言語モデルの分野におけるCFの広さとの直接的な関係を明らかにするための第一歩を踏み出した。
様々なモデルスケールにまたがる3つの大規模微調整データセットの実験により,CFを緩和する手法の有効性が示された。
- 参考スコア(独自算出の注目度): 79.70722658190097
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Catastrophic Forgetting (CF) means models forgetting previously acquired knowledge when learning new data. It compromises the effectiveness of large language models (LLMs) during fine-tuning, yet the underlying causes have not been thoroughly investigated. This paper takes the first step to reveal the direct link between the flatness of the model loss landscape and the extent of CF in the field of LLMs. Based on this, we introduce the sharpness-aware minimization to mitigate CF by flattening the loss landscape. Experiments on three widely-used fine-tuning datasets, spanning different model scales, demonstrate the effectiveness of our method in alleviating CF. Analyses show that we nicely complement the existing anti-forgetting strategies, further enhancing the resistance of LLMs to CF.
- Abstract(参考訳): Catastrophic Forgetting (CF) は、新しいデータを学ぶ際に獲得した知識を忘れるモデルを意味する。
大規模言語モデル(LLM)の微調整における有効性を損なうが、根本原因については十分に研究されていない。
本稿では, LLM 分野におけるモデル損失景観の平坦性と CF の範囲との直接的な関係を明らかにするための第一歩として, モデル損失景観の平坦性を明らかにする。
これに基づいて、損失景観を平らにすることでCFを緩和するシャープネス対応の最小化を導入する。
様々なモデルスケールにまたがる3つの大規模微調整データセットの実験により,CFを緩和する手法の有効性が示された。
解析の結果,既存の造形防止戦略を良好に補完し,LCMのCFに対する耐性をさらに高めていることが明らかとなった。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - TRAWL: Tensor Reduced and Approximated Weights for Large Language Models [11.064868044313855]
TRAWL (Tensor Reduced and Approximated Weights for Large Language Models) は、複数の重み行列に対してテンソル分解を適用し、大域的な構造パターンを捉えることでLLMを効果的に分解する手法である。
我々の実験によると、TRAWLは、追加のデータやトレーニング、微調整を必要とせず、ベンチマークデータセットのベースラインモデルよりも最大16%モデル性能を向上させる。
論文 参考訳(メタデータ) (2024-06-25T04:01:32Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - LLMs for Generating and Evaluating Counterfactuals: A Comprehensive Study [2.7731115923558143]
大規模言語モデル (LLM) は, NLP タスクにおいて顕著な性能を示したが, 高品質な対実数 (CF) の生成における有効性はいまだ不明である。
我々は、いくつかの共通LCMを比較し、そのCFを評価し、本質的なメトリクスとこれらのCFがデータ拡張に与える影響を評価した。
その結果, LLMは流動性CFを生成するが, 誘導される変化を最小限に抑えるのに苦慮していることがわかった。
論文 参考訳(メタデータ) (2024-04-26T11:57:21Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
NLPシステムの予測に関する因果的説明は、安全性を確保し、信頼を確立するために不可欠である。
既存の手法は、しばしばモデル予測を効果的または効率的に説明できない。
本稿では, 対物近似(CF)の2つの手法を提案する。
論文 参考訳(メタデータ) (2023-10-01T07:31:04Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - DualCF: Efficient Model Extraction Attack from Counterfactual
Explanations [57.46134660974256]
クラウドサービスプロバイダがMachine-Learning-as-a-Serviceプラットフォームをローンチした。
このような余分な情報は、必然的にクラウドモデルが、抽出攻撃に対してより脆弱になる。
本稿では,分類モデルを盗むためのクエリ効率を大幅に向上させる,新しい単純で効率的なクエリ手法を提案する。
論文 参考訳(メタデータ) (2022-05-13T08:24:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。