論文の概要: HateDebias: On the Diversity and Variability of Hate Speech Debiasing
- arxiv url: http://arxiv.org/abs/2406.04876v1
- Date: Fri, 7 Jun 2024 12:18:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 14:11:13.801368
- Title: HateDebias: On the Diversity and Variability of Hate Speech Debiasing
- Title(参考訳): HateDebias:Hate Speech Debiasingの多様性と多様性について
- Authors: Nankai Lin, Hongyan Wu, Zhengming Chen, Zijian Li, Lianxi Wang, Shengyi Jiang, Dong Zhou, Aimin Yang,
- Abstract要約: 我々はHateDebiasという名のベンチマークを提案し、連続的かつ変化する環境下でのヘイトスピーチ検出のモデル能力を分析する。
具体的には、バイアスの多様性を満たすために、さまざまな種類のバイアスを持つ既存のヘイトスピーチ検出データセットを収集します。
我々は,HateDebiasの性能を1種類のバイアスで学習したモデルの検出精度を評価する。
- 参考スコア(独自算出の注目度): 14.225997610785354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hate speech on social media is ubiquitous but urgently controlled. Without detecting and mitigating the biases brought by hate speech, different types of ethical problems. While a number of datasets have been proposed to address the problem of hate speech detection, these datasets seldom consider the diversity and variability of bias, making it far from real-world scenarios. To fill this gap, we propose a benchmark, named HateDebias, to analyze the model ability of hate speech detection under continuous, changing environments. Specifically, to meet the diversity of biases, we collect existing hate speech detection datasets with different types of biases. To further meet the variability (i.e., the changing of bias attributes in datasets), we reorganize datasets to follow the continuous learning setting. We evaluate the detection accuracy of models trained on the datasets with a single type of bias with the performance on the HateDebias, where a significant performance drop is observed. To provide a potential direction for debiasing, we further propose a debiasing framework based on continuous learning and bias information regularization, as well as the memory replay strategies to ensure the debiasing ability of the model. Experiment results on the proposed benchmark show that the aforementioned method can improve several baselines with a distinguished margin, highlighting its effectiveness in real-world applications.
- Abstract(参考訳): ソーシャルメディア上でのヘイトスピーチは至るところで行われているが、緊急に制御されている。
ヘイトスピーチによってもたらされるバイアスを検出および緩和することなく、様々な種類の倫理的問題が生じる。
ヘイトスピーチ検出の問題を解決するために、多くのデータセットが提案されているが、これらのデータセットはバイアスの多様性と可変性をほとんど考慮しておらず、現実のシナリオとはかけ離れている。
このギャップを埋めるために、HateDebiasというベンチマークを提案し、連続的かつ変化する環境下でのヘイトスピーチ検出のモデル能力を分析する。
具体的には、バイアスの多様性を満たすために、さまざまな種類のバイアスを持つ既存のヘイトスピーチ検出データセットを収集します。
変動性(すなわちデータセットにおけるバイアス属性の変化)を更に満たすため、データセットを継続的学習設定に従って再編成する。
我々は,HateDebiasの性能を1種類のバイアスで学習したモデルの検出精度を評価する。
さらに,学習の継続とバイアス情報の正規化に基づくデバイアス化フレームワークと,モデルのデバイアス化能力を確保するためのメモリ再生戦略を提案する。
提案したベンチマークによる実験結果から, 上記の手法は, 実世界の応用において, 顕著なマージンでいくつかのベースラインを向上し, 有効性を強調した。
関連論文リスト
- Towards Debiasing Frame Length Bias in Text-Video Retrieval via Causal
Intervention [72.12974259966592]
トリミングビデオクリップのトレーニングセットとテストセットのフレーム長差による時間偏差について,一意かつ体系的に検討した。
Epic-Kitchens-100, YouCook2, MSR-VTTデータセットについて, 因果脱バイアス法を提案し, 広範な実験およびアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-09-17T15:58:27Z) - On the Challenges of Building Datasets for Hate Speech Detection [0.0]
我々はまず,データ中心のレンズを用いてヘイトスピーチ検出を取り巻く問題を分析する。
次に、データ生成パイプラインを7つの広範囲にわたってカプセル化する、包括的なフレームワークの概要を示します。
論文 参考訳(メタデータ) (2023-09-06T11:15:47Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - Debiasing Stance Detection Models with Counterfactual Reasoning and
Adversarial Bias Learning [15.68462203989933]
スタンス検出モデルは、ショートカットとしてテキスト部分のデータセットバイアスに依存する傾向がある。
より正確にバイアスをモデル化するための逆バイアス学習モジュールを提案する。
論文 参考訳(メタデータ) (2022-12-20T16:20:56Z) - Exploiting Transformer-based Multitask Learning for the Detection of
Media Bias in News Articles [21.960154864540282]
メディアバイアスを検出するために,マルチタスク学習を用いて学習したトランスフォーマーに基づくディープラーニングアーキテクチャを提案する。
我々の最高のパフォーマンス実装は、マクロ$F_1$の0.776を実現しています。
論文 参考訳(メタデータ) (2022-11-07T12:22:31Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
ディープラーニングモデルは、稀なシーンやオブジェクトを持つビデオに適用すると、パフォーマンスが悪くなります。
この問題にはアルゴリズムとデータセットの2つの異なる角度から対処する。
偏りのある表現は、他のデータセットやタスクに転送するとより一般化できることを示す。
論文 参考訳(メタデータ) (2022-09-20T00:30:35Z) - Power of Explanations: Towards automatic debiasing in hate speech
detection [19.26084350822197]
ヘイトスピーチ検出は、自然言語処理(NLP)の現実世界における一般的なダウンストリームアプリケーションである。
本稿では,潜在的なバイアスを検出するための説明手法を頼りに,自動誤用検知(MiD)を提案する。
論文 参考訳(メタデータ) (2022-09-07T14:14:03Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
テンポラル・センテンス・グラウンディング・イン・ビデオ(TSGV)は、未編集のビデオに自然言語文を埋め込むことを目的としている。
最近の研究では、現在のベンチマークデータセットには明らかなモーメントアノテーションバイアスがあることが判明している。
偏りのあるデータセットによる膨らませ評価を緩和するため、基礎的リコールスコアを割引する新しい評価基準「dR@n,IoU@m」を導入する。
論文 参考訳(メタデータ) (2022-03-10T08:58:18Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Statistical Analysis of Perspective Scores on Hate Speech Detection [7.447951461558536]
最先端のヘイトスピーチ分類器は、トレーニングデータと同じ特徴分布を持つデータ上でテストする場合のみ効率的である。
このような低レベルの特徴に依存する多様なデータ分布は、データの自然なバイアスによる欠如の主な原因である。
異なるヘイトスピーチデータセットは、パースペクティブスコアを抽出するという点では、非常によく似ている。
論文 参考訳(メタデータ) (2021-06-22T17:17:35Z) - Improving Robustness by Augmenting Training Sentences with
Predicate-Argument Structures [62.562760228942054]
データセットバイアスに対するロバスト性を改善する既存のアプローチは、主にトレーニング目標の変更に焦点を当てている。
本稿では,学習データ中の入力文に対応する述語句構造を付加することを提案する。
特定のバイアスを対象とせずに、文の増大は、複数のバイアスに対してトランスフォーマーモデルの堅牢性を向上することを示す。
論文 参考訳(メタデータ) (2020-10-23T16:22:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。