論文の概要: Leveraging Generative AI for Extracting Process Models from Multimodal Documents
- arxiv url: http://arxiv.org/abs/2406.04959v1
- Date: Fri, 7 Jun 2024 14:24:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 13:41:57.398256
- Title: Leveraging Generative AI for Extracting Process Models from Multimodal Documents
- Title(参考訳): マルチモーダル文書からのプロセスモデル抽出のための生成AIの活用
- Authors: Marvin Voelter, Raheleh Hadian, Timotheus Kampik, Marius Breitmayer, Manfred Reichert,
- Abstract要約: Generative Pre-trained Transformer (GPT) は、マルチモーダル(テキストおよびイメージベース)入力からグラフィカルなプロセスモデルを自動的に生成することができる。
以上の結果から,GPTはマルチモーダル入力に基づく半自動プロセスモデリングに有用であることが示唆された。
- 参考スコア(独自算出の注目度): 3.1859715179637695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an investigation of the capabilities of Generative Pre-trained Transformers (GPTs) to auto-generate graphical process models from multi-modal (i.e., text- and image-based) inputs. More precisely, we first introduce a small dataset as well as a set of evaluation metrics that allow for a ground truth-based evaluation of multi-modal process model generation capabilities. We then conduct an initial evaluation of commercial GPT capabilities using zero-, one-, and few-shot prompting strategies. Our results indicate that GPTs can be useful tools for semi-automated process modeling based on multi-modal inputs. More importantly, the dataset and evaluation metrics as well as the open-source evaluation code provide a structured framework for continued systematic evaluations moving forward.
- Abstract(参考訳): 本稿では,多モード入力(テキストおよび画像ベース)からグラフィカルなプロセスモデルを自動的に生成するGPT(Generative Pre-trained Transformer)の機能について検討する。
より正確には、我々はまず、マルチモーダルプロセスモデル生成機能に対する基礎的な真理に基づく評価を可能にするための、小さなデータセットと一連の評価指標を導入する。
次に,ゼロ,ワンショット,少数ショットのプロンプト戦略を用いて商業用GPT機能の初期評価を行う。
この結果から,GPTはマルチモーダル入力に基づく半自動プロセスモデリングに有用であることが示唆された。
さらに重要なのは、データセットと評価のメトリクスとオープンソースの評価コードによって、今後も継続する体系的な評価のための構造化されたフレームワークが提供されます。
関連論文リスト
- An Optimism-based Approach to Online Evaluation of Generative Models [23.91197677628145]
利用可能なモデル群間の標準評価スコアを最大化する生成モデルを見つけるためのオンライン評価フレームワークを提案する。
具体的には、Fr'echet Inception Distance(FID)とInception Score(IS)のメトリクスに基づいて、生成モデルのオンライン評価を行う。
論文 参考訳(メタデータ) (2024-06-11T16:57:48Z) - Process Modeling With Large Language Models [42.0652924091318]
本稿では,大規模言語モデル(LLM)のプロセスモデリングへの統合について検討する。
プロセスモデルの自動生成と反復的改善にLLMを利用するフレームワークを提案する。
予備的な結果は、プロセスモデリングタスクを合理化するフレームワークの能力を示している。
論文 参考訳(メタデータ) (2024-03-12T11:27:47Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、より多くの洞察を提供するさまざまなメトリクスの使用を可能にします。
本稿では,言語モデル(LM)のパワーを活用し,効率と効率を向上させる新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - On the Evaluation and Refinement of Vision-Language Instruction Tuning
Datasets [71.54954966652286]
VLIT(Vision-Language Instruction-Tuning)データセットの評価を試みる。
各データセットから高いSQのサンプルを収集し,新しいデータセットREVO-LIONを構築した。
注目すべきは、完全なデータの半分でなくても、REVO-LIONでトレーニングされたモデルは、単にすべてのVLITデータセットを追加するのに匹敵するパフォーマンスを達成することができることだ。
論文 参考訳(メタデータ) (2023-10-10T13:01:38Z) - Accelerated materials language processing enabled by GPT [5.518792725397679]
我々は材料言語処理のための生成変換器(GPT)対応パイプラインを開発した。
まず、関連する文書をスクリーニングするためのGPT対応文書分類手法を開発する。
第二に、NERタスクでは、エンティティ中心のプロンプトを設計し、そのほとんどを学習することで、パフォーマンスが改善された。
最後に,GPT対応抽出QAモデルを開発し,性能の向上とアノテーションの自動修正の可能性を示す。
論文 参考訳(メタデータ) (2023-08-18T07:31:13Z) - Evaluating Representations with Readout Model Switching [18.475866691786695]
本稿では,最小記述長(MDL)の原理を用いて評価指標を考案する。
我々は、読み出しモデルのためのハイブリッド離散および連続値モデル空間を設計し、それらの予測を組み合わせるために切替戦略を用いる。
提案手法はオンライン手法で効率的に計算でき,様々なアーキテクチャの事前学習された視覚エンコーダに対する結果を示す。
論文 参考訳(メタデータ) (2023-02-19T14:08:01Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。