Efficient 3D Shape Generation via Diffusion Mamba with Bidirectional SSMs
- URL: http://arxiv.org/abs/2406.05038v1
- Date: Fri, 7 Jun 2024 16:02:07 GMT
- Title: Efficient 3D Shape Generation via Diffusion Mamba with Bidirectional SSMs
- Authors: Shentong Mo,
- Abstract summary: We introduce a novel diffusion architecture tailored for 3D point clouds generation-Diffusion Mamba (DiM-3D)
DiM-3D forgoes traditional attention mechanisms, instead utilizing the inherent efficiency of the Mamba architecture to maintain linear complexity with respect to sequence length.
Our empirical results on the ShapeNet benchmark demonstrate that DiM-3D achieves state-of-the-art performance in generating high-fidelity and diverse 3D shapes.
- Score: 16.05598829701769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in sequence modeling have led to the development of the Mamba architecture, noted for its selective state space approach, offering a promising avenue for efficient long sequence handling. However, its application in 3D shape generation, particularly at high resolutions, remains underexplored. Traditional diffusion transformers (DiT) with self-attention mechanisms, despite their potential, face scalability challenges due to the cubic complexity of attention operations as input length increases. This complexity becomes a significant hurdle when dealing with high-resolution voxel sizes. To address this challenge, we introduce a novel diffusion architecture tailored for 3D point clouds generation-Diffusion Mamba (DiM-3D). This architecture forgoes traditional attention mechanisms, instead utilizing the inherent efficiency of the Mamba architecture to maintain linear complexity with respect to sequence length. DiM-3D is characterized by fast inference times and substantially lower computational demands, quantified in reduced Gflops, thereby addressing the key scalability issues of prior models. Our empirical results on the ShapeNet benchmark demonstrate that DiM-3D achieves state-of-the-art performance in generating high-fidelity and diverse 3D shapes. Additionally, DiM-3D shows superior capabilities in tasks like 3D point cloud completion. This not only proves the model's scalability but also underscores its efficiency in generating detailed, high-resolution voxels necessary for advanced 3D shape modeling, particularly excelling in environments requiring high-resolution voxel sizes. Through these findings, we illustrate the exceptional scalability and efficiency of the Diffusion Mamba framework in 3D shape generation, setting a new standard for the field and paving the way for future explorations in high-resolution 3D modeling technologies.
Related papers
- MAR-3D: Progressive Masked Auto-regressor for High-Resolution 3D Generation [44.94438766074643]
We introduce MAR-3D, which integrates a pyramid variational autoencoder with a cascaded masked auto-regressive transformer.
Our architecture employs random masking during training and auto-regressive denoising in random order during inference, naturally accommodating the unordered property of 3D latent tokens.
arXiv Detail & Related papers (2025-03-26T13:00:51Z) - TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models [69.0220314849478]
TripoSG is a new streamlined shape diffusion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images.
The resulting 3D shapes exhibit enhanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input images.
To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
arXiv Detail & Related papers (2025-02-10T16:07:54Z) - 3D-MoE: A Mixture-of-Experts Multi-modal LLM for 3D Vision and Pose Diffusion via Rectified Flow [69.94527569577295]
3D vision and spatial reasoning have long been recognized as preferable for accurately perceiving our three-dimensional world.
Due to the difficulties in collecting high-quality 3D data, research in this area has only recently gained momentum.
We propose converting existing densely activated LLMs into mixture-of-experts (MoE) models, which have proven effective for multi-modal data processing.
arXiv Detail & Related papers (2025-01-28T04:31:19Z) - Taming Feed-forward Reconstruction Models as Latent Encoders for 3D Generative Models [7.485139478358133]
Recent AI-based 3D content creation has largely evolved along two paths: feed-forward image-to-3D reconstruction approaches and 3D generative models trained with 2D or 3D supervision.
We show that existing feed-forward reconstruction methods can serve as effective latent encoders for training 3D generative models, thereby bridging these two paradigms.
arXiv Detail & Related papers (2024-12-31T21:23:08Z) - 3D-WAG: Hierarchical Wavelet-Guided Autoregressive Generation for High-Fidelity 3D Shapes [20.675695749508353]
We introduce 3D-WAG, an AR model for 3D implicit distance fields that can perform unconditional shape generation.
By redefining 3D AR generation task as next-scale" prediction, we reduce the computational cost of generation.
Our results show 3D-WAG achieves superior performance in key metrics like Coverage and MMD.
arXiv Detail & Related papers (2024-11-28T10:33:01Z) - GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation [75.39457097832113]
This paper introduces a novel 3D generation framework, offering scalable, high-quality 3D generation with an interactive Point Cloud-structured Latent space.
Our framework employs a Variational Autoencoder with multi-view posed RGB-D(epth)-N(ormal) renderings as input, using a unique latent space design that preserves 3D shape information.
The proposed method, GaussianAnything, supports multi-modal conditional 3D generation, allowing for point cloud, caption, and single/multi-view image inputs.
arXiv Detail & Related papers (2024-11-12T18:59:32Z) - OccLoff: Learning Optimized Feature Fusion for 3D Occupancy Prediction [5.285847977231642]
3D semantic occupancy prediction is crucial for ensuring the safety in autonomous driving.
Existing fusion-based occupancy methods typically involve performing a 2D-to-3D view transformation on image features.
We propose OccLoff, a framework that Learns to optimize Feature Fusion for 3D occupancy prediction.
arXiv Detail & Related papers (2024-11-06T06:34:27Z) - Diffusion Models in 3D Vision: A Survey [11.116658321394755]
We review the state-of-the-art approaches that leverage diffusion models for 3D visual tasks.
These approaches include 3D object generation, shape completion, point cloud reconstruction, and scene understanding.
We discuss potential solutions, including improving computational efficiency, enhancing multimodal fusion, and exploring the use of large-scale pretraining.
arXiv Detail & Related papers (2024-10-07T04:12:23Z) - MonoMM: A Multi-scale Mamba-Enhanced Network for Real-time Monocular 3D Object Detection [9.780498146964097]
We propose an innovative network architecture, MonoMM, for real-time monocular 3D object detection.
MonoMM consists of Focused Multi-Scale Fusion (FMF) and Depth-Aware Feature Enhancement Mamba (DMB) modules.
Our method outperforms previous monocular methods and achieves real-time detection.
arXiv Detail & Related papers (2024-08-01T10:16:58Z) - DiffTF++: 3D-aware Diffusion Transformer for Large-Vocabulary 3D Generation [53.20147419879056]
We introduce a diffusion-based feed-forward framework to address challenges with a single model.
Building upon our 3D-aware Diffusion model with TransFormer, we propose a stronger version for 3D generation, i.e., DiffTF++.
Experiments on ShapeNet and OmniObject3D convincingly demonstrate the effectiveness of our proposed modules.
arXiv Detail & Related papers (2024-05-13T17:59:51Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
This paper introduces a novel framework called LN3Diff to address a unified 3D diffusion pipeline.
Our approach harnesses a 3D-aware architecture and variational autoencoder to encode the input image into a structured, compact, and 3D latent space.
It achieves state-of-the-art performance on ShapeNet for 3D generation and demonstrates superior performance in monocular 3D reconstruction and conditional 3D generation.
arXiv Detail & Related papers (2024-03-18T17:54:34Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
Auto-regressive models have achieved impressive results in 2D image generation by modeling joint distributions in grid space.
We extend auto-regressive models to 3D domains, and seek a stronger ability of 3D shape generation by improving auto-regressive models at capacity and scalability simultaneously.
arXiv Detail & Related papers (2024-02-19T15:33:09Z) - Pushing the Limits of 3D Shape Generation at Scale [65.24420181727615]
We present a significant breakthrough in 3D shape generation by scaling it to unprecedented dimensions.
We have developed a model with an astounding 3.6 billion trainable parameters, establishing it as the largest 3D shape generation model to date, named Argus-3D.
arXiv Detail & Related papers (2023-06-20T13:01:19Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
Generative models aim to learn the distribution of observed data by generating new instances.
Recently, researchers started to shift focus from 2D to 3D space.
representing 3D data poses significantly greater challenges.
arXiv Detail & Related papers (2022-10-27T17:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.