A Novel Time Series-to-Image Encoding Approach for Weather Phenomena Classification
- URL: http://arxiv.org/abs/2406.05096v1
- Date: Fri, 7 Jun 2024 17:21:10 GMT
- Title: A Novel Time Series-to-Image Encoding Approach for Weather Phenomena Classification
- Authors: Christian Giannetti,
- Abstract summary: This paper aims to solve the problem of identifying the nature of specific weather phenomena from the received signal level (RSL) in 4G/LTE mobile terminals.
We propose a novel approach to encode time series as images and model the task as an image classification problem, which we finally address using convolutional neural networks (CNNs)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rainfall estimation through the analysis of its impact on electromagnetic waves has sparked increasing interest in the research community. Recent studies have delved into its effects on cellular network performance, demonstrating the potential to forecast rainfall levels based on electromagnetic wave attenuation during precipitations. This paper aims to solve the problem of identifying the nature of specific weather phenomena from the received signal level (RSL) in 4G/LTE mobile terminals. Specifically, utilizing time-series data representing RSL, we propose a novel approach to encode time series as images and model the task as an image classification problem, which we finally address using convolutional neural networks (CNNs). The main benefit of the abovementioned procedure is the opportunity to utilize various data augmentation techniques simultaneously. This encompasses applying traditional approaches, such as moving averages, to the time series and enhancing the generated images. We have investigated various image data augmentation methods to identify the most effective combination for this scenario. In the upcoming sections, we will introduce the task of rainfall estimation and conduct a comprehensive analysis of the dataset used. Subsequently, we will formally propose a new approach for converting time series into images. To conclude, the paper's final section will present and discuss the experiments conducted, providing the reader with a brief yet comprehensive overview of the results.
Related papers
- A Visual-Analytical Approach for Automatic Detection of Cyclonic Events in Satellite Observations [8.321173617981387]
Estimating the location and intensity of tropical cyclones holds crucial significance for predicting catastrophic weather events.
Current process for cyclone detection and intensity estimation involves physics-based simulation studies which are time-consuming.
This research aims to focus specifically on cyclone detection, intensity estimation and related aspects using only image input and data-driven approaches.
arXiv Detail & Related papers (2024-09-25T14:52:04Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - A Distance Correlation-Based Approach to Characterize the Effectiveness of Recurrent Neural Networks for Time Series Forecasting [1.9950682531209158]
We provide an approach to link time series characteristics with RNN components via the versatile metric of distance correlation.
We empirically show that the RNN activation layers learn the lag structures of time series well.
We also show that the activation layers cannot adequately model moving average and heteroskedastic time series processes.
arXiv Detail & Related papers (2023-07-28T22:32:08Z) - Augmenting Deep Learning Adaptation for Wearable Sensor Data through
Combined Temporal-Frequency Image Encoding [4.458210211781739]
We present a novel modified-recurrent plot-based image representation that seamlessly integrates both temporal and frequency domain information.
We evaluate the proposed method using accelerometer-based activity recognition data and a pretrained ResNet model, and demonstrate its superior performance compared to existing approaches.
arXiv Detail & Related papers (2023-07-03T09:29:27Z) - Deep learning-based deconvolution for interferometric radio transient
reconstruction [0.39259415717754914]
Radio astronomy facilities like LOFAR, MeerKAT/SKA, ASKAP/SKA, and the future SKA-LOW bring tremendous sensitivity in time and frequency.
These facilities enable advanced studies of radio transients, volatile by nature, that can be detected or missed in the data.
These transients are markers of high-energy accelerations of electrons and manifest in a wide range of temporal scales.
arXiv Detail & Related papers (2023-06-24T08:58:52Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Time Series Imaging for Link Layer Anomaly Classification in Wireless
Networks [0.6015898117103068]
In this paper, we perform a first time analysis of image-based representation techniques for wireless anomaly detection.
We propose a new deep learning architecture enabling accurate anomaly detection.
Our results demonstrate the potential of transformation of time series signals to images to improve classification performance.
arXiv Detail & Related papers (2021-04-02T10:23:06Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.