Time Series Imaging for Link Layer Anomaly Classification in Wireless
Networks
- URL: http://arxiv.org/abs/2104.00972v1
- Date: Fri, 2 Apr 2021 10:23:06 GMT
- Title: Time Series Imaging for Link Layer Anomaly Classification in Wireless
Networks
- Authors: Blaz Bertalanic, Marko Meza and Carolina Fortuna
- Abstract summary: In this paper, we perform a first time analysis of image-based representation techniques for wireless anomaly detection.
We propose a new deep learning architecture enabling accurate anomaly detection.
Our results demonstrate the potential of transformation of time series signals to images to improve classification performance.
- Score: 0.6015898117103068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The number of end devices that use the last mile wireless connectivity is
dramatically increasing with the rise of smart infrastructures and require
reliable functioning to support smooth and efficient business processes. To
efficiently manage such massive wireless networks, more advanced and accurate
network monitoring and malfunction detection solutions are required. In this
paper, we perform a first time analysis of image-based representation
techniques for wireless anomaly detection using recurrence plots and Gramian
angular fields and propose a new deep learning architecture enabling accurate
anomaly detection. We examine the relative performance of the proposed model
and show that the image transformation of time series improves the performance
of anomaly detection by up to 29% for binary classification and by up to 27%
for multiclass classification. At the same time, the best performing model
based on recurrence plot transformation leads to up to 55% increase compared to
the state of the art where classical machine learning techniques are used. We
also provide insights for the decisions of the classifier using an instance
based approach enabled by insights into guided back-propagation. Our results
demonstrate the potential of transformation of time series signals to images to
improve classification performance compared to classification on raw time
series data.
Related papers
- Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
We propose a universal synthetic image detector Time Step Generating (TSG)
TSG does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms.
We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
arXiv Detail & Related papers (2024-11-17T09:39:50Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
We study the problem of generalizable synthetic image detection, aiming to detect forgery images from diverse generative methods.
We present a novel forgery-aware adaptive transformer approach, namely FatFormer.
Our approach tuned on 4-class ProGAN data attains an average of 98% accuracy to unseen GANs, and surprisingly generalizes to unseen diffusion models with 95% accuracy.
arXiv Detail & Related papers (2023-12-27T17:36:32Z) - Remote Sensing Image Change Detection with Graph Interaction [1.8579693774597708]
We propose a bitemporal image graph Interaction network for remote sensing change detection, namely BGINet-CD.
Our model demonstrates superior performance compared to other state-of-the-art methods (SOTA) on the GZ CD dataset.
arXiv Detail & Related papers (2023-07-05T03:32:49Z) - Augmenting Deep Learning Adaptation for Wearable Sensor Data through
Combined Temporal-Frequency Image Encoding [4.458210211781739]
We present a novel modified-recurrent plot-based image representation that seamlessly integrates both temporal and frequency domain information.
We evaluate the proposed method using accelerometer-based activity recognition data and a pretrained ResNet model, and demonstrate its superior performance compared to existing approaches.
arXiv Detail & Related papers (2023-07-03T09:29:27Z) - Unsupervised Industrial Anomaly Detection via Pattern Generative and Contrastive Networks [6.393288885927437]
We propose Vision Transformer based (VIT) unsupervised anomaly detection network.
It utilizes a hierarchical task learning and human experience to enhance its interpretability.
Our method achieves 99.8% AUC, which surpasses previous state-of-the-art methods.
arXiv Detail & Related papers (2022-07-20T10:09:53Z) - Stacking VAE with Graph Neural Networks for Effective and Interpretable
Time Series Anomaly Detection [5.935707085640394]
We propose a stacking variational auto-encoder (VAE) model with graph neural networks for the effective and interpretable time-series anomaly detection.
We show that our proposed model outperforms the strong baselines on three public datasets with considerable improvements.
arXiv Detail & Related papers (2021-05-18T09:50:00Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.