A Manifold Perspective on the Statistical Generalization of Graph Neural Networks
- URL: http://arxiv.org/abs/2406.05225v1
- Date: Fri, 7 Jun 2024 19:25:02 GMT
- Title: A Manifold Perspective on the Statistical Generalization of Graph Neural Networks
- Authors: Zhiyang Wang, Juan Cervino, Alejandro Ribeiro,
- Abstract summary: Graph Neural Networks (GNNs) combine information from adjacent nodes by successive applications of graph convolutions.
We study the generalization gaps of GNNs on both node-level and graph-level tasks.
We show that the generalization gaps decrease with the number of nodes in the training graphs.
- Score: 84.01980526069075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks have been successfully extended to operate on graphs, giving rise to Graph Neural Networks (GNNs). GNNs combine information from adjacent nodes by successive applications of graph convolutions. GNNs have been implemented successfully in various learning tasks while the theoretical understanding of their generalization capability is still in progress. In this paper, we leverage manifold theory to analyze the statistical generalization gap of GNNs operating on graphs constructed on sampled points from manifolds. We study the generalization gaps of GNNs on both node-level and graph-level tasks. We show that the generalization gaps decrease with the number of nodes in the training graphs, which guarantees the generalization of GNNs to unseen points over manifolds. We validate our theoretical results in multiple real-world datasets.
Related papers
- Higher-Order GNNs Meet Efficiency: Sparse Sobolev Graph Neural Networks [6.080095317098909]
Graph Neural Networks (GNNs) have shown great promise in modeling relationships between nodes in a graph.
Previous studies have primarily attempted to utilize the information from higher-order neighbors in the graph.
We make a fundamental observation: the regular and the Hadamard power of the Laplacian matrix behave similarly in the spectrum.
We propose a novel graph convolutional operator based on the sparse Sobolev norm of graph signals.
arXiv Detail & Related papers (2024-11-07T09:53:11Z) - Graph neural networks and non-commuting operators [4.912318087940015]
We develop a limit theory of graphon-tuple neural networks and use it to prove a universal transferability theorem.
Our theoretical results extend well-known transferability theorems for GNNs to the case of several simultaneous graphs.
We derive a training procedure that provably enforces the stability of the resulting model.
arXiv Detail & Related papers (2024-11-06T21:17:14Z) - Generalization of Geometric Graph Neural Networks [84.01980526069075]
We study the generalization capabilities of geometric graph neural networks (GNNs)
We prove a generalization gap between the optimal empirical risk and the optimal statistical risk of this GNN.
The most important observation is that the generalization capability can be realized with one large graph instead of being limited to the size of the graph as in previous results.
arXiv Detail & Related papers (2024-09-08T18:55:57Z) - Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
arXiv Detail & Related papers (2024-08-25T16:00:44Z) - What functions can Graph Neural Networks compute on random graphs? The
role of Positional Encoding [0.0]
We aim to deepen the theoretical understanding of Graph Neural Networks (GNNs) on large graphs, with a focus on their expressive power.
Recently, several works showed that, on very general random graphs models, GNNs converge to certains functions as the number of nodes grows.
arXiv Detail & Related papers (2023-05-24T07:09:53Z) - Towards Better Generalization with Flexible Representation of
Multi-Module Graph Neural Networks [0.27195102129094995]
We use a random graph generator to investigate how the graph size and structural properties affect the predictive performance of GNNs.
We present specific evidence that the average node degree is a key feature in determining whether GNNs can generalize to unseen graphs.
We propose a multi- module GNN framework that allows the network to adapt flexibly to new graphs by generalizing a single canonical nonlinear transformation over aggregated inputs.
arXiv Detail & Related papers (2022-09-14T12:13:59Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Optimization and Generalization Analysis of Transduction through
Gradient Boosting and Application to Multi-scale Graph Neural Networks [60.22494363676747]
It is known that the current graph neural networks (GNNs) are difficult to make themselves deep due to the problem known as over-smoothing.
Multi-scale GNNs are a promising approach for mitigating the over-smoothing problem.
We derive the optimization and generalization guarantees of transductive learning algorithms that include multi-scale GNNs.
arXiv Detail & Related papers (2020-06-15T17:06:17Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
Graph Neural Networks (GNNs) are emerging machine learning models on graphs.
Most existing GNN models in practice are shallow and essentially feature-centric.
We show empirically and analytically that the existing shallow GNNs cannot preserve graph structures well.
We propose Eigen-GNN, a plug-in module to boost GNNs ability in preserving graph structures.
arXiv Detail & Related papers (2020-06-08T02:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.