Measuring Fairness in Large-Scale Recommendation Systems with Missing Labels
- URL: http://arxiv.org/abs/2406.05247v1
- Date: Fri, 07 Jun 2024 20:14:13 GMT
- Title: Measuring Fairness in Large-Scale Recommendation Systems with Missing Labels
- Authors: Yulong Dong, Kun Jin, Xinghai Hu, Yang Liu,
- Abstract summary: In large-scale recommendation systems, the vast array of items makes it infeasible to obtain accurate user preferences for each product, resulting in a common issue of missing labels.
Previous methods often treat these samples missing labels as negative, which can significantly deviate from the ground truth fairness metrics.
We propose a novel method employing a small randomized traffic to estimate fairness metrics accurately.
- Score: 8.921669180278274
- License:
- Abstract: In large-scale recommendation systems, the vast array of items makes it infeasible to obtain accurate user preferences for each product, resulting in a common issue of missing labels. Typically, only items previously recommended to users have associated ground truth data. Although there is extensive research on fairness concerning fully observed user-item interactions, the challenge of fairness in scenarios with missing labels remains underexplored. Previous methods often treat these samples missing labels as negative, which can significantly deviate from the ground truth fairness metrics. Our study addresses this gap by proposing a novel method employing a small randomized traffic to estimate fairness metrics accurately. We present theoretical bounds for the estimation error of our fairness metric and support our findings with empirical evidence on real data. Our numerical experiments on synthetic and TikTok's real-world data validate our theory and show the efficiency and effectiveness of our novel methods. To the best of our knowledge, we are the first to emphasize the necessity of random traffic in dataset collection for recommendation fairness, the first to publish a fairness-related dataset from TikTok and to provide reliable estimates of fairness metrics in the context of large-scale recommendation systems with missing labels.
Related papers
- Data Distribution Valuation [56.71023681599737]
Existing data valuation methods define a value for a discrete dataset.
In many use cases, users are interested in not only the value of the dataset, but that of the distribution from which the dataset was sampled.
We propose a maximum mean discrepancy (MMD)-based valuation method which enables theoretically principled and actionable policies.
arXiv Detail & Related papers (2024-10-06T07:56:53Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
We first contribute a dedicated dataset called the Fair Forgery Detection (FairFD) dataset, where we prove the racial bias of public state-of-the-art (SOTA) methods.
We design novel metrics including Approach Averaged Metric and Utility Regularized Metric, which can avoid deceptive results.
We also present an effective and robust post-processing technique, Bias Pruning with Fair Activations (BPFA), which improves fairness without requiring retraining or weight updates.
arXiv Detail & Related papers (2024-07-19T14:53:18Z) - AIM: Attributing, Interpreting, Mitigating Data Unfairness [40.351282126410545]
Existing fair machine learning (FairML) research has predominantly focused on mitigating discriminative bias in the model prediction.
We investigate a novel research problem: discovering samples that reflect biases/prejudices from the training data.
We propose practical algorithms for measuring and countering sample bias.
arXiv Detail & Related papers (2024-06-13T05:21:10Z) - Learn to be Fair without Labels: a Distribution-based Learning Framework for Fair Ranking [1.8577028544235155]
We propose a distribution-based fair learning framework (DLF) that does not require labels by replacing the unavailable fairness labels with target fairness exposure distributions.
Our proposed framework achieves better fairness performance while maintaining better control over the fairness-relevance trade-off.
arXiv Detail & Related papers (2024-05-28T03:49:04Z) - Lazy Data Practices Harm Fairness Research [49.02318458244464]
We present a comprehensive analysis of fair ML datasets, demonstrating how unreflective practices hinder the reach and reliability of algorithmic fairness findings.
Our analyses identify three main areas of concern: (1) a textbflack of representation for certain protected attributes in both data and evaluations; (2) the widespread textbf of minorities during data preprocessing; and (3) textbfopaque data processing threatening the generalization of fairness research.
This study underscores the need for a critical reevaluation of data practices in fair ML and offers directions to improve both the sourcing and usage of datasets.
arXiv Detail & Related papers (2024-04-26T09:51:24Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
We aim to train models that mitigate group fairness disparity without causing harm to model accuracy.
The current data acquisition methods, such as fair active learning approaches, typically require annotating sensitive attributes.
We propose a tractable active data sampling algorithm that does not rely on training group annotations.
arXiv Detail & Related papers (2024-02-20T07:57:38Z) - Fair Active Learning in Low-Data Regimes [22.349886628823125]
In machine learning applications, ensuring fairness is essential to avoid perpetuating social inequities.
In this work, we address the challenges of reducing bias and improving accuracy in data-scarce environments.
We introduce an innovative active learning framework that combines an exploration procedure inspired by posterior sampling with a fair classification subroutine.
We demonstrate that this framework performs effectively in very data-scarce regimes, maximizing accuracy while satisfying fairness constraints with high probability.
arXiv Detail & Related papers (2023-12-13T23:14:55Z) - Estimation of Fair Ranking Metrics with Incomplete Judgments [70.37717864975387]
We propose a sampling strategy and estimation technique for four fair ranking metrics.
We formulate a robust and unbiased estimator which can operate even with very limited number of labeled items.
arXiv Detail & Related papers (2021-08-11T10:57:00Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
We show that different negative sampling schemes implicitly trade-off performance on dominant versus rare labels.
We provide a unified means to explicitly tackle both sampling bias, arising from working with a subset of all labels, and labeling bias, which is inherent to the data due to label imbalance.
arXiv Detail & Related papers (2021-05-12T15:40:13Z) - RATT: Leveraging Unlabeled Data to Guarantee Generalization [96.08979093738024]
We introduce a method that leverages unlabeled data to produce generalization bounds.
We prove that our bound is valid for 0-1 empirical risk minimization.
This work provides practitioners with an option for certifying the generalization of deep nets even when unseen labeled data is unavailable.
arXiv Detail & Related papers (2021-05-01T17:05:29Z) - Group Fairness by Probabilistic Modeling with Latent Fair Decisions [36.20281545470954]
This paper studies learning fair probability distributions from biased data by explicitly modeling a latent variable that represents a hidden, unbiased label.
We aim to achieve demographic parity by enforcing certain independencies in the learned model.
We also show that group fairness guarantees are meaningful only if the distribution used to provide those guarantees indeed captures the real-world data.
arXiv Detail & Related papers (2020-09-18T19:13:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.