LLM-Enhanced Bayesian Optimization for Efficient Analog Layout Constraint Generation
- URL: http://arxiv.org/abs/2406.05250v2
- Date: Wed, 19 Jun 2024 20:49:26 GMT
- Title: LLM-Enhanced Bayesian Optimization for Efficient Analog Layout Constraint Generation
- Authors: Guojin Chen, Keren Zhu, Seunggeun Kim, Hanqing Zhu, Yao Lai, Bei Yu, David Z. Pan,
- Abstract summary: This paper presents the textttLLANA framework for analog layout synthesis.
It exploits the few-shot learning abilities of Large Language Models (LLMs) for more efficient generation of analog design-dependent parameter constraints.
Results demonstrate that textttLLANA not only achieves performance comparable to state-of-the-art (SOTA) BO methods but also enables a more effective exploration of the analog circuit design space.
- Score: 13.860831058885314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analog layout synthesis faces significant challenges due to its dependence on manual processes, considerable time requirements, and performance instability. Current Bayesian Optimization (BO)-based techniques for analog layout synthesis, despite their potential for automation, suffer from slow convergence and extensive data needs, limiting their practical application. This paper presents the \texttt{LLANA} framework, a novel approach that leverages Large Language Models (LLMs) to enhance BO by exploiting the few-shot learning abilities of LLMs for more efficient generation of analog design-dependent parameter constraints. Experimental results demonstrate that \texttt{LLANA} not only achieves performance comparable to state-of-the-art (SOTA) BO methods but also enables a more effective exploration of the analog circuit design space, thanks to LLM's superior contextual understanding and learning efficiency. The code is available at https://github.com/dekura/LLANA.
Related papers
- AnalogCoder-Pro: Unifying Analog Circuit Generation and Optimization via Multi-modal LLMs [30.598442053557896]
Large Language Models (LLMs) have brought new promise to analog design automation.<n>We propose AnalogCoder-Pro, a unified framework that integrates generative capabilities and optimization techniques.<n>We show that these approaches significantly improve the success rate of analog circuit design and enhance circuit performance.
arXiv Detail & Related papers (2025-08-04T15:25:48Z) - From Large to Super-Tiny: End-to-End Optimization for Cost-Efficient LLMs [23.253571170594455]
Large Language Models (LLMs) have significantly advanced artificial intelligence.
This paper introduces a three-stage cost-efficient end-to-end LLM deployment pipeline.
Our approach yields a super tiny model optimized for cost and performance in online systems.
arXiv Detail & Related papers (2025-04-18T05:25:22Z) - Optimizing LLM Inference: Fluid-Guided Online Scheduling with Memory Constraints [14.341123057506827]
Large Language Models (LLMs) are indispensable in today's applications, but their inference procedure demands significant computational resources.
This paper formulates LLM inference optimization as a multi-stage online scheduling problem.
We develop a fluid dynamics approximation to provide a tractable benchmark that guides algorithm design.
arXiv Detail & Related papers (2025-04-15T16:00:21Z) - SymRTLO: Enhancing RTL Code Optimization with LLMs and Neuron-Inspired Symbolic Reasoning [18.40402135952776]
This paper presents SymRTLO, a novel neuron-symbolic RTL optimization framework.
A symbolic module is proposed for analyzing and optimizing finite state machine (FSM) logic.
Experiments on the RTL-Rewriter benchmark with Synopsys Design Compiler and Yosys show that SymRTLO improves power, performance, and area (PPA) by up to 43.9%, 62.5%, and 51.1%, respectively.
arXiv Detail & Related papers (2025-04-14T16:15:55Z) - LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.
Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.
We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Direct Preference Optimization Using Sparse Feature-Level Constraints [47.15096507230884]
Feature-level constrained Preference Optimization is a novel method designed to simplify the alignment process while ensuring stability.
Our approach enjoys efficiency by using sparse features activated in a well-trained sparse autoencoder and the quality of sequential KL divergence.
arXiv Detail & Related papers (2024-11-12T07:54:13Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - OPTDTALS: Approximate Logic Synthesis via Optimal Decision Trees Approach [9.081146426124482]
Approximate Logic Synthesis (ALS) aims to reduce circuit complexity by sacrificing correctness.
We propose a new ALS methodology realizing approximation via learning optimal decision trees in empirical accuracy.
arXiv Detail & Related papers (2024-08-22T11:23:58Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
Large language model (LLM) decoding involves generating a sequence of tokens based on a given context.
The typical autoregressive decoding method requires a separate forward pass through the model for each token generated.
We introduce ADED, which accelerates LLM decoding without requiring fine-tuning.
arXiv Detail & Related papers (2024-06-27T22:20:39Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - LInK: Learning Joint Representations of Design and Performance Spaces through Contrastive Learning for Mechanism Synthesis [15.793704096341523]
In this paper, we introduce LInK, a novel framework that integrates contrastive learning of performance and design space with optimization techniques.
By leveraging a multimodal and transformation-invariant contrastive learning framework, LInK learns a joint representation that captures complex physics and design representations of mechanisms.
Our results demonstrate that LInK not only advances the field of mechanism design but also broadens the applicability of contrastive learning and optimization to other areas of engineering.
arXiv Detail & Related papers (2024-05-31T03:04:57Z) - Large Language Models to Enhance Bayesian Optimization [57.474613739645605]
We present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within Bayesian optimization.
At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations.
Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse.
arXiv Detail & Related papers (2024-02-06T11:44:06Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
We introduce a technique to enhance the inference efficiency of parameter-shared language models.
We also propose a simple pre-training technique that leads to fully or partially shared models.
Results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs.
arXiv Detail & Related papers (2023-10-19T15:13:58Z) - Cheaply Evaluating Inference Efficiency Metrics for Autoregressive
Transformer APIs [66.30706841821123]
Large language models (LLMs) power many state-of-the-art systems in natural language processing.
LLMs are extremely computationally expensive, even at inference time.
We propose a new metric for comparing inference efficiency across models.
arXiv Detail & Related papers (2023-05-03T21:51:42Z) - BOiLS: Bayesian Optimisation for Logic Synthesis [10.981155046738126]
We propose BOiLS, the first algorithm adapting modern Bayesian optimisation to navigate the space of synthesis operations.
We demonstrate BOiLS's superior performance compared to state-of-the-art in terms of both sample efficiency and QoR values.
arXiv Detail & Related papers (2021-11-11T12:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.