論文の概要: VTrans: Accelerating Transformer Compression with Variational Information Bottleneck based Pruning
- arxiv url: http://arxiv.org/abs/2406.05276v2
- Date: Tue, 11 Jun 2024 23:11:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 11:28:49.030891
- Title: VTrans: Accelerating Transformer Compression with Variational Information Bottleneck based Pruning
- Title(参考訳): VTrans: 変分情報ボトルネックに基づくプルーニングによる変圧器圧縮の高速化
- Authors: Oshin Dutta, Ritvik Gupta, Sumeet Agarwal,
- Abstract要約: 本稿では,変分情報ボトルネック (VIB) の原理によって導かれる反復的刈り取りフレームワーク VTrans を提案する。
提案手法は,VIBトレーニングマスクを用いた埋め込み,アテンションヘッド,層など,すべての構造成分を圧縮する。
特に,本手法は従来の最先端手法よりも最大70%圧縮を実現する。
- 参考スコア(独自算出の注目度): 3.256420760342604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, there has been a growing emphasis on compressing large pre-trained transformer models for resource-constrained devices. However, traditional pruning methods often leave the embedding layer untouched, leading to model over-parameterization. Additionally, they require extensive compression time with large datasets to maintain performance in pruned models. To address these challenges, we propose VTrans, an iterative pruning framework guided by the Variational Information Bottleneck (VIB) principle. Our method compresses all structural components, including embeddings, attention heads, and layers using VIB-trained masks. This approach retains only essential weights in each layer, ensuring compliance with specified model size or computational constraints. Notably, our method achieves upto 70% more compression than prior state-of-the-art approaches, both task-agnostic and task-specific. We further propose faster variants of our method: Fast-VTrans utilizing only 3% of the data and Faster-VTrans, a time efficient alternative that involves exclusive finetuning of VIB masks, accelerating compression by upto 25 times with minimal performance loss compared to previous methods. Extensive experiments on BERT, ROBERTa, and GPT-2 models substantiate the efficacy of our method. Moreover, our method demonstrates scalability in compressing large models such as LLaMA-2-7B, achieving superior performance compared to previous pruning methods. Additionally, we use attention-based probing to qualitatively assess model redundancy and interpret the efficiency of our approach. Notably, our method considers heads with high attention to special and current tokens in un-pruned model as foremost candidates for pruning while retained heads are observed to attend more to task-critical keywords.
- Abstract(参考訳): 近年,資源制約のあるデバイスに対して,大規模な事前学習型トランスフォーマーモデルを圧縮することの重要性が高まっている。
しかし、伝統的なプルーニング法は、しばしば埋め込み層を無傷で残し、過パラメータ化のモデルに繋がる。
さらに、プルーニングされたモデルのパフォーマンスを維持するために、大規模なデータセットによる広範な圧縮時間が必要となる。
これらの課題に対処するために,変分情報ボトルネック(VIB)の原理で導かれる反復的刈り取りフレームワークであるVTransを提案する。
提案手法は,VIBトレーニングマスクを用いた埋め込み,アテンションヘッド,層など,すべての構造成分を圧縮する。
このアプローチは各レイヤに必須の重みしか保持せず、特定のモデルサイズや計算上の制約に準拠することを保証する。
特に,本手法は,タスク非依存とタスク特化の両面において,従来の最先端手法よりも最大70%圧縮を実現している。
高速VTransは、VBマスクを排他的に微調整し、圧縮を25倍まで加速し、従来の方法に比べて性能損失が最小限である。
BERT, ROBERTa, GPT-2モデルに対する広範囲な実験により, 本法の有効性が確認された。
さらに,LLaMA-2-7Bのような大型モデルの圧縮におけるスケーラビリティを実証し,従来のプルーニング法と比較して優れた性能を実現する。
さらに、注意に基づく探索を用いて、モデルの冗長性を質的に評価し、アプローチの効率性を解釈する。
特に,本手法では,タスククリティカルなキーワードに係わる上で,保持された頭部が最優先のプルーニング候補として,特別なトークンや現在のトークンに注意を払っている。
関連論文リスト
- Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
イテレーティブ・プルーニング(ACIP)による圧縮について紹介する。
ACIPは、単一の勾配降下ランから圧縮性能トレードオフを決定するアルゴリズム的なアプローチである。
本稿では,ACIPが共通量子化に基づく圧縮手法をシームレスに補完することを示す。
論文 参考訳(メタデータ) (2025-02-03T18:40:58Z) - You Only Prune Once: Designing Calibration-Free Model Compression With Policy Learning [20.62274005080048]
PruneNetは、ポリシー学習プロセスとしてモデルプルーニングを再構成する新しいモデル圧縮手法である。
LLaMA-2-7Bモデルはわずか15分で圧縮でき、ゼロショット性能の80%以上を維持できる。
複雑なマルチタスク言語理解タスクでは、PruneNetはオリジナルのモデルの80%のパフォーマンスを維持することで、その堅牢性を実証している。
論文 参考訳(メタデータ) (2025-01-25T18:26:39Z) - Singular Value Scaling: Efficient Generative Model Compression via Pruned Weights Refinement [9.454314879815337]
生成モデルは、しばしば支配的な特異ベクトルを示し、微調整効率を阻害し、最適以下の性能をもたらす。
SVS(Singular Value Scaling, Singular Value Scaling, SVS)は, 両モデルタイプに適用可能な, プレナードウェイトを精製する多用途技術である。
SVSは、追加のトレーニングコストなしでモデルタイプ間の圧縮性能を改善する。
論文 参考訳(メタデータ) (2024-12-23T08:40:08Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
キー値(KV)キャッシュは、長い入力シーケンスと出力シーケンスを必要とするが、特に高い推論コストに寄与する。
ここでは,すべてのレイヤのKVキャッシュサイズを決定するという課題を,最適なグローバルプレフィックス設定を探すタスクに再編成するPrefixKVを提案する。
本手法は他の手法と比較して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-12-04T15:48:59Z) - Visual Fourier Prompt Tuning [63.66866445034855]
本稿では,大規模なトランスフォーマーモデルに適用するための汎用的で効果的な方法として,Visual Fourier Prompt Tuning (VFPT)法を提案する。
提案手法では,高速フーリエ変換を即時埋め込みに取り入れ,空間領域情報と周波数領域情報の両方を調和的に検討する。
提案手法は,2つのベンチマークにおいて,現状のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-11-02T18:18:35Z) - MatryoshkaKV: Adaptive KV Compression via Trainable Orthogonal Projection [14.073722038551125]
KVキャッシュは、大規模言語モデルの推論におけるデファクト技術となっている。
本稿では,低ランクな投影行列を用いて,キャッシュ特性を次元を小さくした空間に変換する。
提案手法は, 平均KVキャッシュ圧縮率60%で90%以上の性能を維持することができる。
論文 参考訳(メタデータ) (2024-10-16T08:34:51Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
視覚言語による事前学習モデルでは、事前学習タスクと下流タスクのギャップを埋めるために、しばしば多くの学習可能なトークンを必要とする。
本稿では,効率的なVL転送学習を実現するために,APT(Approximated Prompt Tuning)アプローチを提案する。
論文 参考訳(メタデータ) (2023-06-27T05:43:47Z) - oBERTa: Improving Sparse Transfer Learning via improved initialization,
distillation, and pruning regimes [82.99830498937729]
oBERTaは自然言語処理のための使いやすい言語モデルのセットです。
NLPの実践者はモデル圧縮の専門知識なしで3.8倍から24.3倍の高速モデルを得ることができる。
代表的な7つのNLPタスクにおけるoBERTaの利用について検討する。
論文 参考訳(メタデータ) (2023-03-30T01:37:19Z) - DQ-BART: Efficient Sequence-to-Sequence Model via Joint Distillation and
Quantization [75.72231742114951]
BARTやT5のような大規模事前学習シーケンス・ツー・シーケンスモデルは、多くの生成NLPタスクで最先端のパフォーマンスを達成する。
これらのモデルは、大きなメモリ要件と高いレイテンシのため、リソース制約のあるシナリオにおいて大きな課題となる。
そこで,本論文では,教師モデルから学生モデルへの知識の伝達と,学生モデルの定量化と定量化について提案する。
論文 参考訳(メタデータ) (2022-03-21T18:04:25Z) - Multi-Dimensional Model Compression of Vision Transformer [21.8311401851523]
近年、視覚変換器 (ViT) が注目されているが、その膨大な計算コストは実用的展開において問題となっている。
従来のViTプルーニング法は、モデルを1次元だけに沿ってプルークする傾向がある。
我々は,多次元のViT圧縮パラダイムを提唱し,アテンションヘッド,ニューロン,シーケンス次元からの冗長性低減を共同で行うことを提案する。
論文 参考訳(メタデータ) (2021-12-31T19:54:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。