論文の概要: DQ-BART: Efficient Sequence-to-Sequence Model via Joint Distillation and
Quantization
- arxiv url: http://arxiv.org/abs/2203.11239v1
- Date: Mon, 21 Mar 2022 18:04:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-23 14:02:54.140739
- Title: DQ-BART: Efficient Sequence-to-Sequence Model via Joint Distillation and
Quantization
- Title(参考訳): DQ-BART:ジョイント蒸留と量子化による効率の良いシーケンス・ツー・シーケンスモデル
- Authors: Zheng Li, Zijian Wang, Ming Tan, Ramesh Nallapati, Parminder Bhatia,
Andrew Arnold, Bing Xiang, Dan Roth
- Abstract要約: BARTやT5のような大規模事前学習シーケンス・ツー・シーケンスモデルは、多くの生成NLPタスクで最先端のパフォーマンスを達成する。
これらのモデルは、大きなメモリ要件と高いレイテンシのため、リソース制約のあるシナリオにおいて大きな課題となる。
そこで,本論文では,教師モデルから学生モデルへの知識の伝達と,学生モデルの定量化と定量化について提案する。
- 参考スコア(独自算出の注目度): 75.72231742114951
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large-scale pre-trained sequence-to-sequence models like BART and T5 achieve
state-of-the-art performance on many generative NLP tasks. However, such models
pose a great challenge in resource-constrained scenarios owing to their large
memory requirements and high latency. To alleviate this issue, we propose to
jointly distill and quantize the model, where knowledge is transferred from the
full-precision teacher model to the quantized and distilled low-precision
student model. Empirical analyses show that, despite the challenging nature of
generative tasks, we were able to achieve a 16.5x model footprint compression
ratio with little performance drop relative to the full-precision counterparts
on multiple summarization and QA datasets. We further pushed the limit of
compression ratio to 27.7x and presented the performance-efficiency trade-off
for generative tasks using pre-trained models. To the best of our knowledge,
this is the first work aiming to effectively distill and quantize
sequence-to-sequence pre-trained models for language generation tasks.
- Abstract(参考訳): BARTやT5のような大規模事前学習シーケンス・ツー・シーケンスモデルは、多くの生成NLPタスクで最先端のパフォーマンスを達成する。
しかし、そのようなモデルは、大きなメモリ要求と高いレイテンシのため、リソース制約のあるシナリオでは大きな課題となる。
この問題を軽減するため,本研究では,知識をフル精度の教師モデルから,量子化・蒸留された低精度の学生モデルに伝達するモデルを共同で蒸留・定量化することを提案する。
経験的分析により、生成タスクの難易度にもかかわらず、複数の要約とQAデータセットの完全精度と比較して、性能低下の少ない16.5倍モデルフットプリント圧縮比を達成することができた。
さらに圧縮比の限界を27.7倍にし,事前学習モデルを用いて生成タスクの性能・効率トレードオフを示した。
我々の知る限り、これは言語生成タスクのためのシーケンス・ツー・シーケンス事前学習モデルを効果的に蒸留・定量化することを目的とした最初の研究である。
関連論文リスト
- Over-parameterized Student Model via Tensor Decomposition Boosted Knowledge Distillation [10.48108719012248]
我々は、より大規模な教師モデルを模倣するために、コンパクトな学生モデルを訓練する知識蒸留(KD)に焦点を当てる。
これまでの作業の多くとは対照的に、トレーニング中の学生モデルのパラメータをスケールアップする。
論文 参考訳(メタデータ) (2024-11-10T12:40:59Z) - Efficient Point Cloud Classification via Offline Distillation Framework and Negative-Weight Self-Distillation Technique [46.266960248570086]
本稿では,教師モデルと生徒モデルの両方の同時ロードを回避する,革新的なオフライン記録戦略を提案する。
このアプローチは教師モデルに多数の追加サンプルを投入し、データ拡張パラメータと対応するロジット出力の両方を記録する。
実験により, 提案した蒸留方式により, 学生モデルが最先端モデルに匹敵する性能を達成できることが実証された。
論文 参考訳(メタデータ) (2024-09-03T16:12:12Z) - Progressive Distillation Based on Masked Generation Feature Method for Knowledge Graph Completion [29.297959023968165]
そこで本稿では,KGCタスクのためのマスク生成機能に基づくプログレッシブ蒸留法を提案する。
具体的には、PLMの予蒸留を行い、高品質の教師モデルを取得し、PLMネットワークを圧縮し、マルチグレードの学生モデルを得る。
実験により, 予蒸留段階のモデルが, 既存の最先端手法を超越していることが実証された。
論文 参考訳(メタデータ) (2024-01-19T07:34:36Z) - Cross-modal Prompts: Adapting Large Pre-trained Models for Audio-Visual
Downstream Tasks [55.36987468073152]
本稿では,DG-SCT(Dual-Guided Space-Channel-Temporal)アテンション機構を提案する。
DG-SCTモジュールはトレーニング可能なクロスモーダル・インタラクション・レイヤを事前トレーニングされたオーディオ・ビジュアル・エンコーダに組み込む。
提案手法は, AVE, AVVP, AVS, AVQA, AVQAを含む複数のダウンストリームタスクにまたがる最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2023-11-09T05:24:20Z) - Reusing Pretrained Models by Multi-linear Operators for Efficient
Training [65.64075958382034]
大規模なモデルをスクラッチからトレーニングすることは、通常、かなりの量のリソースを必要とする。
bert2BERT や LiGO といった最近の研究は、大規模なモデルを初期化するために、小さな事前訓練されたモデルを再利用している。
本稿では,対象モデルの各重みを事前学習モデルの全重みに線形に相関させる手法を提案する。
論文 参考訳(メタデータ) (2023-10-16T06:16:47Z) - Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time [69.7693300927423]
複数モデルの重み付けを異なるパラメータ構成で微調整することにより,精度とロバスト性が向上することを示す。
モデルスープ手法は,複数の画像分類や自然言語処理タスクにまで拡張されている。
論文 参考訳(メタデータ) (2022-03-10T17:03:49Z) - Improving Non-autoregressive Generation with Mixup Training [51.61038444990301]
本稿では,事前学習したトランスモデルに基づく非自己回帰生成モデルを提案する。
我々はMIxソースと擬似ターゲットという,シンプルで効果的な反復訓練手法を提案する。
質問生成,要約,パラフレーズ生成を含む3つの世代ベンチマーク実験により,提案手法が新たな最先端結果を実現することを示す。
論文 参考訳(メタデータ) (2021-10-21T13:04:21Z) - Zero-shot Adversarial Quantization [11.722728148523366]
ゼロショット逆量子化(ZAQ: Zero-shot adversarial quantization)フレームワークを提案し,効果的な不一致推定と知識伝達を容易にする。
これは、情報的で多様なデータ例を合成するためにジェネレータを駆動する、新しい2レベル不一致モデリングによって達成される。
強力なゼロショットベースラインに対してZAQの優位性を示す3つの基本的なビジョンタスクについて広範な実験を行います。
論文 参考訳(メタデータ) (2021-03-29T01:33:34Z) - Dynamic Model Pruning with Feedback [64.019079257231]
余分なオーバーヘッドを伴わずにスパーストレーニングモデルを生成する新しいモデル圧縮法を提案する。
CIFAR-10 と ImageNet を用いて本手法の評価を行い,得られたスパースモデルが高密度モデルの最先端性能に到達可能であることを示す。
論文 参考訳(メタデータ) (2020-06-12T15:07:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。