論文の概要: CMamba: Channel Correlation Enhanced State Space Models for Multivariate Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2406.05316v3
- Date: Thu, 26 Sep 2024 03:54:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 01:44:51.739318
- Title: CMamba: Channel Correlation Enhanced State Space Models for Multivariate Time Series Forecasting
- Title(参考訳): CMamba:多変量時系列予測のためのチャネル相関強化状態空間モデル
- Authors: Chaolv Zeng, Zhanyu Liu, Guanjie Zheng, Linghe Kong,
- Abstract要約: ステートスペースモデルであるMambaは、堅牢なシーケンスと機能ミキシング機能を備えている。
チャネル間の依存関係のキャプチャは、時系列予測のパフォーマンス向上に不可欠である。
時系列予測に適した改良されたマンバ変種を導入する。
- 参考スコア(独自算出の注目度): 18.50360049235537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in multivariate time series forecasting have been propelled by Linear-based, Transformer-based, and Convolution-based models, with Transformer-based architectures gaining prominence for their efficacy in temporal and cross-channel mixing. More recently, Mamba, a state space model, has emerged with robust sequence and feature mixing capabilities. However, the suitability of the vanilla Mamba design for time series forecasting remains an open question, particularly due to its inadequate handling of cross-channel dependencies. Capturing cross-channel dependencies is critical in enhancing the performance of multivariate time series prediction. Recent findings show that self-attention excels in capturing cross-channel dependencies, whereas other simpler mechanisms, such as MLP, may degrade model performance. This is counterintuitive, as MLP, being a learnable architecture, should theoretically capture both correlations and irrelevances, potentially leading to neutral or improved performance. Diving into the self-attention mechanism, we attribute the observed degradation in MLP performance to its lack of data dependence and global receptive field, which result in MLP's lack of generalization ability. Based on the above insights, we introduce a refined Mamba variant tailored for time series forecasting. Our proposed model, \textbf{CMamba}, incorporates a modified Mamba (M-Mamba) module for temporal dependencies modeling, a global data-dependent MLP (GDD-MLP) to effectively capture cross-channel dependencies, and a Channel Mixup mechanism to mitigate overfitting. Comprehensive experiments conducted on seven real-world datasets demonstrate the efficacy of our model in improving forecasting performance.
- Abstract(参考訳): 多変量時系列予測の最近の進歩は、線形ベース、トランスフォーマーベース、コンボリューションベースモデルによって推進され、トランスフォーマーベースのアーキテクチャは、時間的およびクロスチャネル混合における有効性で注目されている。
最近では、ステートスペースモデルであるMambaが、堅牢なシーケンスと機能ミキシング機能を持って登場した。
しかしながら、時系列予測のためのバニラ・マンバの設計の適合性は、特にチャネル間の依存関係の不十分な処理のため、未解決の問題である。
多変量時系列予測の性能向上には,チャネル間の依存関係の捕捉が重要である。
近年の研究では,MLPなどの簡易なメカニズムはモデル性能を低下させる可能性があるが,チャネル依存性の捕捉において自己注意が優れていることが示唆されている。
MLPは学習可能なアーキテクチャであり、理論的には相関と無関係の両方を捉え、中立性や性能改善につながる可能性がある。
自己注意機構に潜り込むと、データ依存の欠如と大域的受容場が欠如していることから、MLPの一般化能力の欠如が原因と考えられる。
以上の知見に基づいて,時系列予測に適した改良されたマンバ変種を導入する。
提案モデルでは,時間依存性モデリングのためのM-Mamba (M-Mamba)モジュール,グローバルデータ依存型MLP (GDD-MLP) とチャネル間の依存関係を効果的に捕捉するChannel Mixup機構を組み込んだ。
7つの実世界のデータセットで実施した総合実験は、予測性能を向上させる上で、我々のモデルの有効性を実証する。
関連論文リスト
- A Mamba Foundation Model for Time Series Forecasting [13.593170999506889]
本稿では,マンバアーキテクチャ上に構築された時系列予測のための線形複雑基盤モデルであるTSMambaを紹介する。
このモデルは、前方および後方のMambaエンコーダを通して時間的依存関係をキャプチャし、高い予測精度を達成する。
また、タスク固有の予測モデルと比較して、競争力や優れたフルショットパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-11-05T09:34:05Z) - UmambaTSF: A U-shaped Multi-Scale Long-Term Time Series Forecasting Method Using Mamba [7.594115034632109]
本稿では,新しい時系列予測フレームワークであるUmambaTSFを提案する。
U字型エンコーダ・デコーダ多層パーセプトロン(MLP)のマルチスケール特徴抽出機能とMambaのロングシーケンス表現を統合する。
UmambaTSFは、広く使用されているベンチマークデータセットで最先端のパフォーマンスと優れた汎用性を達成する。
論文 参考訳(メタデータ) (2024-10-15T04:56:43Z) - Mamba or Transformer for Time Series Forecasting? Mixture of Universals (MoU) Is All You Need [28.301119776877822]
時系列予測には、正確な予測のために短期と長期の依存関係のバランスが必要である。
変換器は長期依存のモデリングに優れているが、2次計算コストで批判されている。
Mambaは、ほぼ直線的な代替手段を提供するが、潜在的な情報損失のため、時系列の長期予測では効果が低いと報告されている。
論文 参考訳(メタデータ) (2024-08-28T17:59:27Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
最近の進歩であるMambaは、時系列予測において例外的なパフォーマンスを示した。
SIGMA(Selective Gated Mamba)と呼ばれる,シークエンシャルレコメンデーションのための新しいフレームワークを紹介する。
以上の結果から,SIGMAは5つの実世界のデータセットにおいて,現在のモデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T09:12:59Z) - Mamba-PTQ: Outlier Channels in Recurrent Large Language Models [49.1574468325115]
本研究では,マンバモデルが注目型LLMで観測された異常チャネルと同じパターンを示すことを示す。
本研究では,SSMの定量化が難しい理由は,トランスフォーマーベースLLMで見られるような,アクティベーションアウトレーヤによるものであることを示す。
論文 参考訳(メタデータ) (2024-07-17T08:21:06Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - PDMLP: Patch-based Decomposed MLP for Long-Term Time Series Forecasting [0.0]
近年, Transformer アーキテクチャを改良し, 長期時系列予測(LTSF)タスクの有効性を実証する研究が進められている。
これらのモデルの有効性は、配列の局所性を向上する採用されたパッチ機構に大きく寄与する。
さらに、Patch機構で強化された単純な線形層は、複雑なTransformerベースのLTSFモデルより優れている可能性が示唆されている。
論文 参考訳(メタデータ) (2024-05-22T12:12:20Z) - SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion [59.96233305733875]
時系列予測は、金融、交通管理、エネルギー、医療など様々な分野で重要な役割を果たしている。
いくつかの方法は、注意やミキサーのようなメカニズムを利用して、チャネル相関をキャプチャすることでこの問題に対処する。
本稿では,効率的なモデルであるSOFTS(Series-cOre Fused Time Series forecaster)を提案する。
論文 参考訳(メタデータ) (2024-04-22T14:06:35Z) - MTS-Mixers: Multivariate Time Series Forecasting via Factorized Temporal
and Channel Mixing [18.058617044421293]
本稿では,時系列予測の性能に対する注意機構の寄与と欠陥について検討する。
MTS-Mixersを提案する。これは2つの分解されたモジュールを用いて時間的およびチャネル的依存関係をキャプチャする。
いくつかの実世界のデータセットによる実験結果から、MTS-Mixersは既存のTransformerベースのモデルよりも高い効率で性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-02-09T08:52:49Z) - On Continual Model Refinement in Out-of-Distribution Data Streams [64.62569873799096]
現実世界の自然言語処理(NLP)モデルは、アウト・オブ・ディストリビューション(OOD)データストリームの予測エラーを修正するために、継続的に更新する必要がある。
既存の継続学習(CL)問題設定は、そのような現実的で複雑なシナリオをカバーできない。
連続モデル改良(CMR)と呼ばれる新しいCL問題定式化を提案する。
論文 参考訳(メタデータ) (2022-05-04T11:54:44Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。