論文の概要: UmambaTSF: A U-shaped Multi-Scale Long-Term Time Series Forecasting Method Using Mamba
- arxiv url: http://arxiv.org/abs/2410.11278v1
- Date: Tue, 15 Oct 2024 04:56:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:01:38.863487
- Title: UmambaTSF: A U-shaped Multi-Scale Long-Term Time Series Forecasting Method Using Mamba
- Title(参考訳): マンバを用いたU字型マルチスケール時系列予測手法UmambaTSF
- Authors: Li Wu, Wenbin Pei, Jiulong Jiao, Qiang Zhang,
- Abstract要約: 本稿では,新しい時系列予測フレームワークであるUmambaTSFを提案する。
U字型エンコーダ・デコーダ多層パーセプトロン(MLP)のマルチスケール特徴抽出機能とMambaのロングシーケンス表現を統合する。
UmambaTSFは、広く使用されているベンチマークデータセットで最先端のパフォーマンスと優れた汎用性を達成する。
- 参考スコア(独自算出の注目度): 7.594115034632109
- License:
- Abstract: Multivariate Time series forecasting is crucial in domains such as transportation, meteorology, and finance, especially for predicting extreme weather events. State-of-the-art methods predominantly rely on Transformer architectures, which utilize attention mechanisms to capture temporal dependencies. However, these methods are hindered by quadratic time complexity, limiting the model's scalability with respect to input sequence length. This significantly restricts their practicality in the real world. Mamba, based on state space models (SSM), provides a solution with linear time complexity, increasing the potential for efficient forecasting of sequential data. In this study, we propose UmambaTSF, a novel long-term time series forecasting framework that integrates multi-scale feature extraction capabilities of U-shaped encoder-decoder multilayer perceptrons (MLP) with Mamba's long sequence representation. To improve performance and efficiency, the Mamba blocks introduced in the framework adopt a refined residual structure and adaptable design, enabling the capture of unique temporal signals and flexible channel processing. In the experiments, UmambaTSF achieves state-of-the-art performance and excellent generality on widely used benchmark datasets while maintaining linear time complexity and low memory consumption.
- Abstract(参考訳): 多変量時系列予測は、輸送、気象学、金融などの分野において、特に極端な気象事象を予測するために重要である。
State-of-the-artメソッドは主にTransformerアーキテクチャに依存している。
しかし、これらの手法は2次時間の複雑さによって妨げられ、入力シーケンス長に関してモデルのスケーラビリティが制限される。
これは実世界での実践性を著しく制限する。
状態空間モデル(SSM)に基づくMambaは、線形時間複雑性のソリューションを提供し、シーケンシャルデータの効率的な予測の可能性を高める。
本研究では,U字型エンコーダデコーダ多層パーセプトロン(MLP)のマルチスケール特徴抽出機能と,Mambaの長周期表現を統合した,新しい時系列予測フレームワークであるUmambaTSFを提案する。
性能と効率を向上させるため、フレームワークで導入されたMambaブロックは洗練された残留構造と適応可能な設計を採用し、ユニークな時間信号のキャプチャと柔軟なチャネル処理を可能にした。
実験では、UmambaTSFは、線形時間複雑性と低メモリ消費を維持しながら、広く使用されているベンチマークデータセットに対して、最先端のパフォーマンスと優れた汎用性を達成する。
関連論文リスト
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - Test Time Learning for Time Series Forecasting [1.4605709124065924]
テストタイムトレーニング(TTT)モジュールは、MambaベースのTimeMachineなど、最先端モデルよりも一貫して優れている。
その結果,平均二乗誤差 (MSE) と平均絶対誤差 (MAE) に有意な改善が認められた。
この研究は、時系列予測の新しいベンチマークを設定し、スケーラブルで高性能な予測モデルにおける将来の研究の基礎を定めている。
論文 参考訳(メタデータ) (2024-09-21T04:40:08Z) - Integration of Mamba and Transformer -- MAT for Long-Short Range Time Series Forecasting with Application to Weather Dynamics [7.745945701278489]
長い時間範囲の時系列予測は、長期にわたる将来の傾向やパターンを予測するのに不可欠である。
Transformersのようなディープラーニングモデルは、時系列予測の進歩に大きく貢献している。
本稿では,MambaモデルとTransformerモデルの長所と短所について検討する。
論文 参考訳(メタデータ) (2024-09-13T04:23:54Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
最近の進歩であるMambaは、時系列予測において例外的なパフォーマンスを示した。
SIGMA(Selective Gated Mamba)と呼ばれる,シークエンシャルレコメンデーションのための新しいフレームワークを紹介する。
以上の結果から,SIGMAは5つの実世界のデータセットにおいて,現在のモデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T09:12:59Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - CMamba: Channel Correlation Enhanced State Space Models for Multivariate Time Series Forecasting [18.50360049235537]
ステートスペースモデルであるMambaは、堅牢なシーケンスと機能ミキシング機能を備えている。
チャネル間の依存関係のキャプチャは、時系列予測のパフォーマンス向上に不可欠である。
時系列予測に適した改良されたマンバ変種を導入する。
論文 参考訳(メタデータ) (2024-06-08T01:32:44Z) - Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting [26.141054975797868]
時系列予測(TSF)のための新しい適応型マルチスケール分解(AMD)フレームワークを提案する。
我々のフレームワークは時系列を複数のスケールで異なる時間パターンに分解し、MDM(Multi-Scale Decomposable Mixing)ブロックを活用する。
提案手法は,時間依存性とチャネル依存性の両方を効果的にモデル化し,マルチスケールデータ統合を改良するために自己相関を利用する。
論文 参考訳(メタデータ) (2024-06-06T05:27:33Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
天気予報、電力消費、株式市場などの現実世界のタスクには、時間とともに変化するデータの予測が含まれる。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
我々はGSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)の2つの新しいモジュールを提案する。
提案モデルでは,既存の手法に匹敵する計算量と性能の低減が効果的に示された。
論文 参考訳(メタデータ) (2022-10-02T06:58:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。